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0.1 Introduction

This document is an overview of Math 113, Abstract Algebra, at UC Berke-
ley. These notes are largely based off of A First Course in Abstract Algebra
by John B. Fraleigh and lectures by Jeremy Lovejoy. This class does not
require any prior mathematical knowledge outside of high school algebra; in
fact, this course is entirely focused on constructing the key algebraic com-
ponents that allow for high school algebra to fundamentally exist. These
are not a replacement for lectures, labs, or discussions, but should provide
a good enough overview to review for exams!
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1 Introduction

We begin with some basic definitions. A set is, to put it simply, a collection
of objects made of elements. If a is an element of S, we say that a ∈ S.
Exactly one set exists with no elements; the empty set ∅.

A set can be given explicitly (person A, person B, person C) or be defined
by a rule (the set of people in Math 113 over the age of 20). An explicit
definition consists of a comma-separated list of elements enclosed in curly
braces, i.e. {1, 2, 3}. If the set is defined by a rule P (x) on its elements
x ∈ S, we write {x|P (x)}.

A set is well-defined, meaning we know for sure whether or not an ele-
ment is in S. We can’t say that ”S consists of a couple of numbers,” since
this doesn’t give us a way to know whether or not a number is definitely in S.

For two sets B and A, B is a subset of A (B ⊆ A) if for every element
in B is also in A. If B 6= A but B ⊆ A, we say B ⊂ A (B is then a proper
subset of A). This means that A ⊆ A and ∅ ⊆ A.

Let A and B be sets. The Cartesian product of A and B is the set
A×B = {(a, b)|a ∈ A, b ∈ B}.

Some Common Sets

The set Z is the set of integers, i.e. positive and negative whole
numbers and zero.

The set Q is the set of all rational numbers, i.e. numbers
that can be expressed as quotients of m/n where m ∈ Z and n ∈ Z,
with n 6= 0.
R is the set of real numbers.

Z+, Q+, R+ are the set of all positive valued integers, ratio-
nals, and reals, respectively.

C is the set of all complex numbers.

Z∗, Q∗, R∗, and C∗are the set of all nonzero integers, rationals, reals,
and complex numbers.
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1.1 Set Relations

An element a ∈ A is related to b ∈ B, if it (a, b) element of R, where aRb
describes the relation, and R ⊆ A×B.

Equality Relation

Every set S in this course possesses the equality relation, i.e. the
subset

{(x, x)|x ∈ S}

of S × S. Any relation between S and itself is a relation on S.

Example: Take the graph of the function f(x) = x3, defined on x ∈ R.
Then {(x, x3)|x ∈ R} is a relation on R. This allows us to visualize “func-
tions” as subsets of R× R, i.e. a relation.

A function φ mapping from X to Y (φ : X 7→ Y ) is a relation between X
and Y such that each x ∈ X is paired with exactly one y ∈ Y in (x, y) ∈ φ
(typically denoted φ(x) = y). X is the domain of φ and Y is the codomian
of φ. The φ is {φ(x)|x ∈ X}.

1.2 Cardinality

The cardinality of a set is simply the number of elements in the set if the
set is finite, denoted |X|. We are often interested if two sets have the same
cardinality. If two sets have 5 or 6 elements, this is easy to see. How about
Z and Q? Or Z and Z+?

A function is injective or one-to-one if there exists a relation between
X and Y such that if (x1, y1) ∈ R ⊆ X × Y and (x2, y2) ∈ R ⊆ X × Y and
x1 = x2, then y1 = y2. Notice that this matches our definition of a func-
tion above; in simpler terms, if φ(x1) = φ(x2) then x1 = x2. For example,
φ(x) = x2 is not one-to-one, since we can reach φ(x) = 4 from x = 2 and
x = −2.

A function is surjective or onto if the range of φ is Y . For example,
take φ(n) = bn/2c, with φ : Z 7→ Z. φ is not injective, since n = 2 and
n = 3 yield the same φ(n) = 1. However, it is surjective since the range of
φ is Z.

We combine both of these ideas: X and Y have the same cardinality if
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there exists a function φ : X 7→ Y such that φ is both injective and surjec-
tive (i.e. φ is bijective).

We still need a way to define the actual size of Z. We denote |Z| = ℵ0.
This class does not deal heavily with cardinalities of infinities, but ℵ0 is
used to denote the cardinality of the natural numbers (and Z, and Z+, and
Q, and Q+ etc). Note that by Cantor’s diagonalization argument (not cov-
ered here), |R| > ℵ0. An infinite set is one which has a proper subset of
the same cardinality as the original set.

1.3 Partitions and Equivalence Relations

Two sets are disjoint if they have no common elements. A partition of a
set S is a collection of nonempty, disjoint subsets of S such that every point
in S is in one of these subsets, called cells. The cell containing element x is
denoted x̄; for example, if we partition Z into even and odd numbers (such
that the partition has 2 cells), 6̄ = {...,−2, 0, 2, ...}. In general, for each
n > 0 ∈ Z, we can partition Z+ into n cells by the remainder when a value
is divided by n; these cells are then the residuals modulo n ∈ Z+.

There is an easy to see relation that arises as a result of this partition-
ing – xRy for x, y ∈ S if and only if x and y are in the same cell of the
partition ((x, y) ∈ R ⊆ S × S). This relation satisfies the properties below.

Equivalence Relations

An equivalence relation R on S satisfies the following three prop-
erties for x, y, z ∈ S.

1. (Reflexivity) xRx.

2. (Symmetry) If xRy then yRx.

3. (Transivity) If xRy and yRz then xRz.

Congruence modulo n (i.e. a ≡ b mod n) is an equivalence relation.

Equivalence Relations and Partitions

Let S be a nonempty set and let ∼ be an equivalence relation on
S. Then ā = {x ∈ S|x ∼ a}. Cells in a partition arising from an
equivalence relation are known as equivalence classes.
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2 Groups and Subgroups

In traditional calculus classes, we relate most concepts to the ideas of “ad-
dition” and “multiplication.” Here, we abstract this concept to that of a
binary operation, some operation involving two values. A binary opera-
tion on a set gives an algebra on that set, and we examine that algebra’s
structural properties.

To work through an example, we introduce complex numbers C, where

C = {a+ bi|a, b ∈ R}.

We are especially interested in the polar coordinate form of complex num-
bers.

Euler’s Formula

From the Taylor expansion of ex, cosx, and sinx, we arrive at:

eiθ = cos θ + i sin θ.

Define the unit circle
U = {z ∈ C||z| = 1}

as the circle in the Euclidian plane with center 0 and radius 1. Note that
U is closed under multiplication (proof: if z1 ∈ U and z2 ∈ U , then
|z1z2| = |z1||z2| = 1 therefore their product is in U). Using Euler’s, we
can relate z to a value θ in the half-open interval [0, 2π), which we denote
R2π. Note now that multiplying two complex numbers z1 and z2 results in
an angle θ1 + θ2 (mod 2π). We see that multiplication on U and addition
modulo 2π have the same algebraic properties; we call this an isomorphism.

Elements of the set Un = {z ∈ C|zn = 1} are the nth roots of unity,
and are of the form

cos

(
m

2π

n

)
+ i sin

(
m

2π

n

)
, m ∈ [0, n− 1].

2.1 Binary Operations

In abstract algebra, we can generalize the notion of a ‘binary operation’.
Instead of being concerned with addition and multiplication, we define a bi-
nary operation as a function that takes in two values from the same set and
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maps it into the set. More specifically, a binary operation ? is a function
? : S × S 7→ S. ∀(a, b) ∈ S × S, we denote ?((a, b)) as a ? b. We need a
binary operation to be defined for every (a, b) ∈ S × S.

Example: Let M(R) to be the set of real-valued matrices. Matrix ad-
dition, +, is not a binary operation on this set, since if two matrices have
different dimensions we cannot add them together.

Let H ⊆ S. A binary operation ? is closed on H if ∀(a, b) ∈ H × H,
a ? b ∈ H. The binary operation ? restricted to H is the induced opera-
tion of ? on H.

A binary operation is commutative if ∀a, b ∈ S, a ? b = b ? a. A binary
operation is associative if ∀a, b, c ∈ S, (a ? b) ? c = a ? (b ? c).

2.2 Isomorphic Binary Structures

We are interested in studying how binary operations on sets of equal size
give structure to those sets. A binary algbraic structure 〈S, ?〉 is a set S
with a binary structure ? on S.

Let 〈S, ?〉 and 〈S′, ?′〉 be binary algebraic structures. An isomorphism
of S with S′ is a bijective function φ (one-to-one from S onto S′) such that

φ(x ? y) = φ(x) ?′ φ(y), ∀x, y ∈ S.

If φ exists, we say that S and S′ are isomorphic binary structures, so
S ' S′. The relation above is known as the homomorphism property.
A function is an isomorphism if it is both bijective and homomorphic.

2.2.1 How to show Binary Structures are Isomorphic

Here is a set of steps to show that 〈S, ?〉 and 〈S′, ?′〉 are isomorphic.

1. Define a function φ that gives the isomorphism of S with S′

2. Show that φ is one-to-one and onto S′

3. Show φ(x ? y) = φ(x) ?′ φ(y).
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2.2.2 How to show that Binary Structures are not Isomorphic

It is impossible to show that every possible one-to-one function S onto S′;
the only time we can do this is when S and S′ have different cardinalities.
For example, Q is not isomorphic to R since |Q| = ℵ0 and |R| 6= ℵ0.

What about when S and S′ have the same cardinality? Here we examine
structural properties, properties that must be shared by any isomorphic
structure. If 〈S, ?〉 has a structural property that 〈S′, ?′〉 does not have, then
S and S′ are not isomorphic. We can show that Q and Z are not isomorphic.
∀y ∈ Q,∃ x ∈ Q : x + x = y. However, ∃y ∈ Z : x + x 6= y ∀x ∈ Z. Q
has a structural property that Z does not have and therefore they are not
isomorphic.

Identity Element

Let 〈S, ?〉 be a binary structure. e ∈ S is an identity element for ?
if, ∀s ∈ S, e ? s = s ? e = s. Any binary structure has at most one
identity element.

2.3 Groups

Groups

A group 〈G, ?〉 is a set G closed under ? such that:

1. Associativity of ? (G1):

∀ a, b, c ∈ G : (a ? b) ? c = a ? (b ? c)

2. Identity e for ? (G2):

∃ e ∈ G : e ? x = x ? e = x∀x ∈ G

3. Inverse (G3):

∀a ∈ G ∃ a′ ∈ G : a ? a′ = a′ ? a = e.

A group G is abelian if its binary operation is commutative.

For example, S ⊂ Mn(R) consisting of all invertible n × n matrices is a

9



group. All elements of S have an inverse by construction, and the iden-
tity element is In. It is closed under matrix multiplication since ∀ A,B ∈
S, (AB)(B−1A−1−A(BB−1)A−1 = AA−1 = In. However, matrix multipli-
cation is not commutative, and the group is nonabelian. The group men-
tioned here is the general linear group of degree n, denoted GL(n,R) '
GL(Rn).

2.3.1 Elementary Properties of Groups

Left and Right Cancellation

If G is a group with binary operation ?, the left and right cancel-
lation laws hold, i.e.

a ? b = a ? c =⇒ b = c

and
b ? a = c ? a =⇒ b = c.

The identity element is unique in a group; additionally, the inverse of each
element in a group is unique. A semigroup is a set with an associative
binary operation, and a monoid is a semigroup that also has an identity
element. Every group is both a semigroup and a monoid.

2.4 Subgroups

In general, the symbol + is used to denote addition, and is always commu-
tative. Multiplication is traditionally just denoted by juxtaposing the two
elements without a “·,” as ab. This is not necessarily commutative. The
symbol 0 denotes additive identity and the symbol 1 denotes multiplicative
identity. The multiplicative inverse is a−1 and the additive inverse is −a.
The order of a group |G| is the number of elements in G.

Subgroups

If H ⊆ G is closed under the binary operation of G and if H with the
induced operation from G is itself a group, then H is a subgroup of G
(H ≤ G). The subgroup consisting of G is an improper subgroup;
all others are proper subgroups. {e} is the trivial subgroup; all
others are nontrivial.
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There are two types of group structures of order 4; the group V known as the
Klein 4-group, isomorphic to U4 = {1, i,−1,−i}, consists of the elements
{e, a, b, c} where a?a = b?b = c?c = e and a?b = b?a = c, b?c = c?b = a,
a ? c = c ? a = b. The Klein 4-group has three nontrivial proper subgroups,
each of order 2: {a, e}, {b, e}, {c, e}.

The other group of order 4 is Z4, which only has one nontrivial proper sub-
group, that is {0, 2}. Note {0, 3} is not closed under addition, since 3+3 = 2.

H ≤ G if and only if H is closed under ?, e ∈ G =⇒ e ∈ H, and
∀ a ∈ H, a−1 ∈ H.

2.4.1 Cyclic Subgroups

Let G be a group and a ∈ G. Then

H = {an|n ∈ Z}

is a subgroup of G and is the smallest subgroup of G containing a. This
subgroup is known as the cyclic subgroup of G generated by a, denoted
〈a〉. a ∈ G generates G and is a generator for G if 〈a〉 = G. A group is
cyclic if ∃ a ∈ G such that a generates G.

2.5 Cyclic Groups

Extending the previous concept of cyclic groups, we introduce basic proper-
ties of cyclic groups.

1. Every cyclic group is abelian

2. A subgroup of a cyclic group is cyclic

3. The cyclic subgroups of Z under addition are the groups nZ under
addition

Greatest Common Divisor

Let r, s ∈ Z+. The positive generator d of the cyclic group

H = {nr +ms|n,m ∈ Z}

is the greatest common divisor (GCD) of r and s. We write
d = GCD(r, s). Two values are relatively prime if their GCD is 1.
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2.5.1 The Structure of Cyclic Groups

Let G be a cyclic group with generator a. If the order of G is infinite, then
G is isomorphic to 〈Z,+〉. If G has finite order n, then G is isomorphic to
〈Zn,+n〉.

2.5.2 Subgroups of Finite Cyclic Groups

Let G be a cyclic group with n elements generated by a. Let b ∈ G and let
b = as. Then b generates a cyclic subgroup H of G containing n/d elements,
where d is the greatest common divisor of n and s. 〈at〉 = 〈as〉 if and only
if GCD(s, n) = GCD(t, n). If a is a generator of a finite cyclic group G of
order n, then other generators in G are of the form ar where r is relatively
prime to n.

For a given group, we can draw the subgroup diagram as follows (here
we choose Z18:

〈1〉 = Z18

〈2〉 = 〈16〉 = {0, 2, 4, ..., 16} 〈3〉 = 〈15〉 = {0, 3, 6, ..., 15}

〈6〉 = 〈12〉 = {0, 6, 12} 〈9〉 = {0, 9}

〈0〉
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2.6 Generating Sets and Cayley Digraphs

Let G be a group with a ∈ G. We already discussed finding the smallest
group containing a, which is 〈a〉. Suppose we want to find the smallest group
containing both a and b ∈ G. We need to find the subgroup containing
an, bm∀ m,n ∈ Z; a and b are generators of this subgroup, and if this
subgroup is equal to G we say that the subgroup generates G. We extend
this concept to arbitrarily sized generating sets. For example, the Klein
4-group V = {e, a, b, c} is generated by {a, b}.

Intersection of Sets

Let {Si|i ∈ I} be a collection of sets over any set I of indices. The
intersection of sets ∩i∈ISi is the set of all the elements in all the
sets Si, i.e. ⋂

i∈I
Si = {x|x ∈ Si}∀i ∈ I}.

The intersection of some Hi subgroups of G is a subgroup of G. Understand
why this makes sense.

If G is a group and ai ∈ G, i ∈ I then the subgroup H ≤ G : H = {ani |i ∈
I, n ∈ Z} has as elements those elements of G that are finite products of
integral powers of ai.

2.6.1 Cayley Digraphs

A Cayley digraph (directed graph) consists of vertices and arcs, which
are directed edges connecting vertices. Here is Z6 generated by {2, 3}; the
solid lines represent increments of 2, and the dashes represent increments of
3 (these are their own inverse, and are as such have no arrows).

0

1

2

3

4

5
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3 Permutations, Cosets, and Direct Products

3.1 Groups of Permutations

Permutations

A permutation of a set A is a function φ : A 7→ A that is both
one-to-one and onto.

1 7→ 3

2 7→ 1

3 7→ 6

4 7→ 2

5 7→ 5

6 7→ 4

3.1.1 Permutation Groups

The function composition ◦ is a binary operation on the collection of
all permutations of a set A. This operation is also known as permutation
multiplication. For simplicity, we omit the actual ◦ symbol; the operation
στ(x) = σ ◦ τ(x) = σ(τ(x)).

As an example, for the set A = {1, 2, 3, 4, 5} define

σ =

(
1 2 3 4 5
4 2 5 3 1

)
and let

τ =

(
1 2 3 4 5
3 5 4 2 1

)
Then

στ =

(
1 2 3 4 5
4 2 5 3 1

)(
1 2 3 4 5
3 5 4 2 1

)
=

(
1 2 3 4 5
5 1 3 2 4

)
Let A be a nonempty set and let SA be the collection of all permutations of
A. Then SA is a group under permutation multiplication.

When A is the finite set {1, 2, ..., n}, then the group of all permutations
of A is known as the symmetric group on n letters. Note that |Sn| = n!.
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3.1.2 Dihedral Groups

Let’s assign some geometry to the above notion. Take the symmetric group
on 3 letters S3. Imagine if each of the values in A = {1, 2, 3} were the labels
of the vertices of an equilateral triangle. Then the elements of S3 are the
different ways we could overlay the same triangle on itself, namely including
rotations and reflections. The group of symmetries of a regular polygon (i.e.
rotations and reflections) is known as a dihedral group. For n dimensions,
we call this the nth dihedral group Dn. Note that this is isomorphic to
the symmetric group (they are not the same group, since we can’t change
connectivity (i.e. the edges of the polygon have to stay connected in Dn)).
D4 is the group of symmetries of the square, also known as the octic group.
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Cayley’s Theorem

From the above we arrive at an interesting conclusion. For SG (the
group of all permutations of G) every group G is isomorphic to a
subgroup of SG. In other words, every group is isomorphic to a group
of permutations.

Image

Let f : A 7→ B be a function and let H ⊆ A. The image of H
under f is {f(h)|h ∈ H} and is denoted by f [H].

Furthermore, let G and G′ be groups and let φ : G 7→ G′ be a
one-to-one function such that φ(xy) = φ(x)φ(y), ∀ x, y ∈ G. Then
φ[G] is a subgroup of G′ and φ provides an isomorphism of G with
G′.

Here’s a brief proof of Cayley’s Theorem.

Proof: Let G be a group. Define a one-to-one function φ : G 7→ SG
such that φ(x, y) = φ(x)φ(y). Define λx(g) = xg ∀ x ∈ G. Since ∀ c ∈
G, λx(x−1c) = c, we see that λx is onto G. Additionally, for a, b ∈ G, if
λx(a) = λx(b) then a = b, so λx is a one-to-one and a permutation. Now let
φ(x) = λx ∀x ∈ G. Then φ(x) is one-to-one since φ(x) = φ(y) =⇒ λx(e) =
λy(e) =⇒ xe = ye =⇒ x = y. We then see that (λxλy)(g) = λx(λy(g)) =
λx(yg) = xyg = (xy)g = λxy(g), therefore φ(x)φ(y) = φ(xy) and thus φ
provides an isomorphism of G with SG. �

Note that in the above proof we could have substituted λx with ρx(g) = gx
and used the map µ : G 7→ SG with µ(x) = ρx−1 . Here, φ is the left
rectangular representation of G and µ is the right rectangular rep-
resentation of G.
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3.2 Orbits, Cycles, and the Alternating Groups

Orbits

Let σ be a permutation of A. The equivalence classes defined by the
equivalence relation:

∀ a, b ∈ A, a ∼ b ⇐⇒ b = σn(a), n ∈ Z

are the orbits of σ.

Cycles

A permutation σ ∈ Sn is a cycle if it contains at most one orbit with
more than one element. The number of elements in its largest orbit
is the length of the cycle.

Since cycles are permutations themselves, it makes sense that we can mul-
tiply them. We also use a shorthand notation to describe cycles, where the
elements “point” to each other in left-to-right order. For example:

σ =

(
1 2 3 4 5 6 7 8
3 8 6 7 4 1 5 2

)
= (1 3 6)(2 8)(4 7 5).

Note that the cycles above are disjoint, i.e. no element appears in more
than one cycle. Multiplication of disjoint cycles is commutative.

A cycle of length 2 is known as a transposition. Any cycle is a product
of transpositions, and every permutation is the product of disjoint cycles.
No permutation in Sn can be expressed as the product of an odd number of
transpositions and an even number of transpositions. If it can be expressed
by an odd number of transpositions, the permutation is odd, else it is even.

If n ≥ 2, then the collection of all even permutations of {1, 2, 3, ..., n} forms
a subgroup of order n!/2 of the symmetric group Sn.

Alternating Groups

The subgroup of Sn consisting of the even permutations of n letters
is the alternating group An on n letters.
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3.3 Cosets and the Theorem of Lagrange

Let H be a subgroup of G. Then if we define ∼L such that a ∼L b ⇐⇒
a−1b ∈ H and ∼R such that a ∼R b ⇐⇒ ab−1 ∈ H then ∼L and ∼R are
equivalence relations on H.

Cosets

Let H be a subgroup of G. The subset aH = {ah|h ∈ H} of G is the
left coset of H containing a and the subset Ha = {ha|h ∈ H} of G
is the right coset of H containing a. For a subgroup H of an abelian
group G, the partition of G into left cosets of H and the partition
into right cosets are the same.

Theorem of Lagrange

Let H be a subgroup of G. Then the order of H is a divisor of the
order of G. As a consequence, every group of prime order is cyclic.
Likewise, the order of an element of a finite group divides the order
of the group.

Proof: Let n be the order of G, and let H have order m. Every coset of a
subgroup has the same number of elements as that subgroup, so every coset
of H has m elements. Let r be the number of cells in the partition of G into
left cosets of H. Then n = rm, so m is a factor of n. �

Index

Let H be a subgroup of a group G. The number of left cosets of
H in G is the index of H in G and is denoted (G : H). Suppose
H and K are subgroups of a group G such that K ≤ H ≤ G and
suppose (H : K) and (G : H) are finite. Then (G : K) is finite and
(G : K) = (G : H)(H : K).

3.4 Direct Products and Finitely Generated Abelian Groups

Here we show how we can use known groups as building blocks for more
groups.
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Cartesian Product

The Cartesian product of sets S1, S2, ..., Sn is the set of all ordered
n-tuples (a1, a2, ..., an), where ai ∈ Si for i = 1, 2, ..., n. The Cartesian
product is denoted

n∏
i=1

Si.

Let G1, ..., Gn be groups. For (a1, a2, ..., an) and (b1, b2, ..., bn) in
∏n
i=1Gi,

define (a1, a2, ..., an)(b1, b2, ..., bn) to be the element (a1b1, a2b2, ..., anbn).
Then

∏n
i=1Gi is a group, the direct product of the groups Gi, un-

der this binary operation. If the operation is commutative, we sometimes
use additive notation and refer to

∏n
i=1Gi as the direct sum of groups,

and denote this as ⊕ni=1Gi.

The group Zm × Zn is cyclic and isomorphic to Zmn if and only if m and
n are relatively prime. To generalize,

∏n
i=1 Zmi is cyclic and isomorphic to

Zm1m2...mn if and only if m1,m2, ...,mn are such that they are all relatively
prime.

Least Common Multiple

Let r1, ..., rn ∈ Z>0. Their least common multiple or lcm is the
positive generator of the scyclic group of all common multiples of the
ri; that is, the cyclic group of all integers divisible by each ri.

Let (a1, a2, ..., an) ∈
∏n
i=1Gi. If ai is of finite order ri in Gi,

then the order of (a1, a2, ..., an) in
∏n
i=1Gi is equal to the lcm of all

the ri.

Example: We use the above to find the order of (8, 4, 10) in Z12×Z60×Z24.
The gcd of 8 and 12 is 4; then 8 is of order 12/4 = 3 in Z12. Following a
similar procedure, the order of 4 in Z60 is 15 and the order of 10 in Z24 is 12.
Then the lcm of 3, 15, 12 is 60, so (8, 4, 10) is of order 60 in Z12×Z60×Z24.
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3.4.1 The Structure of Finitely Generated Abelian Groups

The Fundamental Theorem of Finitely Generated Abelian
Groups

Every finitely generated abelian group G is isomorphic to a direct
product of cyclic groups in the form

Z(p1)r1 × Z(p2)r2 × . . .× Z(pn)rn × Z× Z× . . .× Z,

where pi are primes (not necessarily distinct) and the ri are positive
integers. The direct product is unique except for possible rarrange-
ment of hte factors; that is, the number of factors Z is unique (the
Betti number of G) and the prime powers (pi)

ri are unique.

Example: We find all abelian groups up to isomorphism of order 360.
This means that any abelian group of order 360 should be structurally iden-
tical to one of the groups listed. We express 360 as a product of prime
powers as 23325. Then using the FTFGAG, we can express this as:

1. Z2 × Z2 × Z2 × Z3 × Z3 × Z5

2. Z4 × Z2 × Z3 × Z3 × Z5

3. Z8 × Z3 × Z3 × Z5

4. Z2 × Z2 × Z2 × Z9 × Z5

5. Z4 × Z2 × Z9 × Z5

6. Z8 × Z9 × Z5

These are the 6 different abelian groups up to isomorphism of order 360.

3.4.2 Applications

Decomposable versus Indecomposable Groups

A group G is decomposable if it is isomorphic to a direct product
of two proper nontrivial subgroups. Else it is indecomposable.
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Various Theorems

The finite indecomposable abelian groups are exactly the cyclic
groups with order a power of a prime.

If m divides the order of a finite abelian group G, then G has
a subgroup of order m.

If m is a square free integer (m is not divisible by the square
of any prime), then every abelian group of order m is cyclic.

4 Homomorphisms and Factor Groups

4.1 Homomorphisms

For two groups G and G′, we’re interested in maps between the groups that
relate the structure of the former to the structure of the latter. These maps
are useful because knowing the properties of one group gives us information
about properties of the other. An isomorphism φ : GG′ is an example of
such a map. Here we introduce a more general set of maps. In our early
definition of an isomorphism, we required that the maps be one-to-one and
onto. These conditions have nothing to do with the binary operations on
the sets – however, these binary operations are the thing we care most about
in our more abstract focus on the algebra on the sets.

Homomorphism

A map φ of G into a group G′ is a homomorphism if the homomor-
phism property

φ(ab) = φ(a)φ(b)

holds ∀ a, b ∈ G. In the above idea, the product ab on the left hand
side takes place in G, while the product φ(a)φ(b) takes place in G′.

For any groups G and G′, there is at least one homomorphism; the trivial
homomorphism φ(g) = e′ for g ∈ G with e′ ∈ G′. This then reduces
the above homorphism property to e′ = e′e′ which is true. As an example
for why this is important, take the homomorphism φ from G onto G′. We
can show that if G is abelian, then G′ is abelian! This arrives from the
above property; ∀a, b ∈ G, ab = ba. Since φ is onto, ∃ a, b ∈ G : φ(a) =
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a′ ∈ G′, φ(b) = b′ ∈ G′. From here, we see that a′b′ = φ(a)φ(b) = φ(ab) =
φ(ba) = φ(b)φ(a) = b′a′ therefore G′ is abelian.

Evaluation Homomorphism

For F , the additive group of all functions R 7→ R, where R is the
additive group of reals, and c ∈ R, the evaluation homomorphism
is φc : F 7→ R with φc(f) = f(c).

As another example, take Rn, the additive group of n-dimensional column
vectors (isomorphic to

∏n
i=1R). Then φ : Rn 7→ Rm is Av for an m × n

dimensional matrix A with v ∈ Rn. φ is a homomorphism.

Reduction Modulo n

Let γ be the natural map of Z 7→ Zn given by γ(m) = r, where r
is the remainder of the division algorithm when m is divided by n.
Then γ is a homomorphism.

4.1.1 Properties of Homomorphisms

Image and Range

Let φ be a mapping of X into Y , and let A ⊆ B and B ⊆ Y . Then
the image φ[A] of A in Y under φ is {φ(a)|a ∈ A}. The set φ[X]
is the range of φ. The inverse image φ−1[B] of B in X is {x ∈
X|φ(x) ∈ B}.

Let φ be a homomorphism of G into G′.

1. If e is the identity element in G then φ(e) is the identity element e′ in
G′.

2. If a ∈ G then φ(a−1) = φ(a)−1

3. If H is a subgroup of G, then φ[H] is a subgroup of G′

4. If K ′ is a subgroup of G′, then φ−1[K ′] is a subgroup of G.

Kernel

Let φ : G 7→ G′ be a homorphism of groups. The subgroup
φ−1[{e′}] = {x ∈ G|φ(x) = e′} is the kernel of φ, denoted Ker(φ).
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For a group homomorphism φ : G 7→ G′, let H =Ker(φ). For a ∈ G, the set

φ−1[{φ(a)}] = {x ∈ G|φ(x) = φ(a)}

is the left coset aH of H, and is also the right coset Ha of H. In other
words, the partitions of G into left and right cosets of H are the same.

Trivial Kernel

A group homorphism φ : G 7→ G′ is a one-to-one if and only if
Ker(φ) = {e}.

From this, we can easily show that φ is an isomorphism by showing that it
is a homomorphism, showing it has a trivial kernel, and then showing that
it maps G onto G′.

Normal Groups

A group is normal if its left and right cosets coincide, that is, if
gH = Hg, ∀g ∈ G. All subgroups of abelian groups are normal. If
φ : G 7→ G′ is a homomorphism, then Ker(φ) is a normal subgroup of
G.

4.2 Factor Groups

Factor Groups

Let φ : G 7→ G′ be a group homomorphism with kernel H. Then
the cosets of H form a factor group, G/H, where (aH)(bH) =
(ab)H. Also, the map µ : G/H 7→ φ[G] defined by µ(aH) = φ(a)
is an isomorphism. Both coset multiplication and µ are well-defined,
independent of the choices a and b from the cosets. We sometimes
refer to G/H as “G modulo H.”

As an example, take Z/5Z. For the remainder function γ : Z 7→ Zn where
γ(m) is the remainder when m is divided by m, we see that Ker(γ) = nZ.
The cosets of nZ are the residuals modulo n; the cosets of Ker(γ) for
n = 5 are {m+ 5n|m ∈ {1, ..., 5}, n ∈ Z}. For Z5, we take the isomorphism
µ : Z/5Z 7→ Z5, which assigns, to each coset of 5Z, its smallest nonnegative
element. For example, µ(5Z) = 0, and µ(1 + 5Z) = 1. For a factor group
G/H, two elements are congruent modulo H if they are in the same coset
of H.
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4.2.1 Factor Groups from Normal Subgroups

So far we’ve obtained factor groups from homomorphisms. However, in
general, the left and right cosets need not be the same. We can define a
binary operation

(aH)(bH) = (ab)H

to define left coset multiplication, if and only if H is a normal subgroup of
G. Additionally, if H is a normal subgroup of G, then the cosets of H form
a group G/H under the binary operation (aH)(bH) = (ab)H. The group
G/H here is the factor group or quotient group of G by H.

As an example, consider R under addition (which is abelian), and let c ∈
R+. Every coset of 〈c〉 has exactly one element between 0 and c (i.e.
{...,−c, 0, c, ...}, {...,−c + 1, 1, c + 1, ...}, {...,−c + 2, 2, c + 2, ...}). Choose
these elements to represent the entire coset. If we add these ‘representatives,’
we’re actually computing the sum modulo c. The group Rc is isomorphic
to R/〈c〉 under an operation φ(x) = x + 〈c〉 for x ∈ Rc. R/〈c〉 is then also
isomorphic to the unit circle U of complex numbers under multiplication.

4.2.2 The Fundamental Homomorphism Theorem

Every homomorphism φ : G 7→ G′ gives rise to a natural factor group
G/Ker(φ). We can now show the other side of this argument; that G/H
gives rise to a homomorphism with kernel H.

If H is a normal subgroup of G (i.e. gH = Hg for all g ∈ G) then this
is true; γ : G 7→ G/H given by γ(x) = xH is a homomorphism with kernel
H.

Proof: γ(xy) = (xy)H = (xH)(yH) = γ(x)γ(y) so γ is a homomorphism;
since xH = H if and only if x ∈ H, the kernel of γ is H. �
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The Fundamental Homomorphism Theorem

Let φ : G 7→ G′ be a group homomorphism with kernel H. Then
φ[G] is a group, and µ : G/H 7→ φ[G] given by µ(G/H) = φ(g) is
an isomorphism. If γ : G 7→ G/H is the homomorphism given by
γ(g) = gH, then φ(g) = µγ(g) for each g in G.

In summary, every homomorphism with domain G gives rise to
a factor group G/H, and every factor group G/H gives rise to a
homomorphism mapping G into G/H.

As an example, we can classify the group (Z4 × Z2)/({0} × Z2) according
to the FTFGAG. The map π1 : Z4 × Z2 7→ Z4 with π1(x, y) = x is a
homomorphism of Z4 × Z2. Note the kernel of π1 is {0} × Z2, so the factor
group given is isomorphic to Z4.

4.2.3 Normal Subgroups and Inner Automorphisms

We want a better way to check whether subgroups are normal without having
to find both the left and right subgroups.

Conditions for Normal Subgroups

The following are three equivalent conditions for a subgroup H of G
to be a normal subgroup of G.

1. ghg−1 ∈ H ∀ g ∈ G and h ∈ H

2. gHg−1 = H ∀ g ∈ G

3. gH = Hg ∀ g ∈ G

Automorphisms

An isomorphism φ : G 7→ G of a group G with itself is an auto-
morphism of G. The automorphism ig : G 7→ G, where ig(x) =
gxg−1, ∀g ∈ G is the inner automorphism of G by g. Performing
ig on x is called conjugation of x by g.

From the above, we see that gH = Hg only if ig[H] = H for all g ∈
G, i.e. H is invariant under all inner automorphisms of G. Note that
this doesn’t mean that ig(h) = h ∀h ∈ H; ig may perform a nontrivial

25



permutation on H. The normal subgroups of G are those invariant under
all inner automorphisms. A subgroup K ≤ G is a conjugate subgroup of
H if K = ig[H] for some g ∈ G.

4.2.4 The Center and Commutator Subgroups

Every nonabelian group G has two important normal subgroups. The first
is the center Z(G) (Z comes from the German Zentrum for “center”), the
set of elements of G which commute with all elements of G, or

Z(G) = {z ∈ G|zg = gz, ∀g ∈ G}.

Z(G) is an abelian subgroup of G. If G is abelian, then Z(G) = G.

The second important normal subgroup is the commutator. Earlier, we
discussed some properties of finitely generated abelian groups. For non-
abelian groups, it might be useful to to try and form an abelian group as
similar to G as possible (to abelianize it). This means our new group would
have ab = ba ∀a, b ∈ G′ where G′ is our “abelianized” group. Alternatively,
we could say aba−1b−1 = e. An element aba−1b−1 ∈ G with a, b ∈ G is a
commutator of G. Then we can turn G into an abelian group by turning
all commutators in G to e. The set of all commutators is the commutator
subgroup denoted C. If N is a normal subgroup of G, then G/N is abelian
if and only if C ≤ N .

4.3 Group Action on a Set

We’ve seen some examples of groups acting on things, like D3 the group of
symmetries of the triangle, the general linear group acting on Rn, etc. We
generalize this here.

Group Action

Let X be a set and G a group. An action of G on X is the map
? : G×X 7→ X such that

1. ex = x, ∀x ∈ X

2. (g1g2)(x) = g1(g2x), ∀x ∈ X, ∀g1, g2 ∈ G

X here is known as a G-set. Additionally, for each g ∈ G, the
function σg : X 7→ X = σg(x) = gx is a permutation of X. The map
φ : G 7→ SX = φ(g) = σg is a homomosphism as φ(g)(x) = gx.
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The subset of G that leaves every element of X fixed is a normal subgroup
N of G, and then X is a G/N -set. The action of gN on X is (gN)x = gx.
If N = {e}, i.e. only the identity leaves all X fixed, then G acts faithfully
on X. If ∀x1, x2 ∈ X, ∃g ∈ G : gx1 = x2 then G is transitive on X.

4.3.1 Isotropy Subgroups

For a G-set X, define the following:

Xg = {x ∈ X|gx = x} Gx = {g ∈ G|gx = x}.

For each x ∈ X, Gx ≤ G. For a particular x ∈ X, the subgroup Gx is known
as the isotropy subgroup of x, the subgroup of G that sends x to itself
under ?.

5 Rings and Fields

So far we’ve dealt with sets with a single binary operation. However, this
isn’t natural for us. We’re used to dealing with sets with two binary opera-
tions defined on it (i.e. Z and R with multiplication and addition).

5.1 Rings and Fields

The most general algebraic structure with two binary operations is a ring.

Rings

A ring 〈R,+, ·〉 is a set R with two binary operations + and ·, called
addition and multiplication, defined on R that satisfies the following
axioms:

1. 〈R,+〉 is an abelian group

2. Multiplication is associative

3. ∀ a, b, c ∈ R, the left distributive law a ·(b+c) = (a ·b)+(a ·c)
and the right distributive law (a+ b) · c = (a · c) + (b · c) hold

From here forward in these notes, Z,C,Q,R refer to the rings defined
by the same sets, not the groups. Additionally, for a cyclic group
〈Zn,+〉, if we define for a, b ∈ Zn the product ab to be ab mod n,
then 〈Zn,+, ·〉 is a ring.
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If R1, ..., Rn are rings, then we can define the ring of ordered n−tuples
(r1, ..., rn) from R1 × ...×Rn the direct product of rings.

If a ring has additive identity 0, then for all a, b ∈ R:

1. 0a = a0 = 0

2. a(−b) = (−a)b = −(ab)

3. (−a)(−b) = ab

5.1.1 Ring Homomorphisms and Isomorphisms

Ring Homomorphism

For rings R and R′, a map φ : R 7→ R′ is a homomorphism if the
following two conditions are satisfied for all a, b ∈ R:

1. φ(a+ b) = φ(a) + φ(b)

2. φ(ab) = φ(a)φ(b)

Note that condition (1) establishes that φ is a group homomorphism,
and therefore all group homomorphism properties apply. φ is one-to-
one if and only if its kernel Ker(φ) = {a ∈ R|φ(a) = 0′} is the subset
{0} ∈ R. We use the symbol F to denote the ring of all functions
mapping R into R. The evaluation homomorphism φa : F 7→ R is
defined as φa(f) = f(a), ∀f ∈ F .

Ring Isomorphism

An isomorphism φ : R 7→ R′ from a ring R to a ring R′ is a ho-
momorphism that is one-to-one and onto R′. The rings are then
isomorphic.

5.1.2 Fields

Rings are defined by their first binary operator being abelian and the second
associative. A ring in which the second binary operator is commutative is
a commutative ring. A ring is not guaranteed an identity element (take
2Z as an example). A ring with an identity element is called a ring with
unity, and the identity element 1 is called unity. Note that if a ring has
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an identity element, that identity element is unique. In the zero ring {0},
0 is both the multiplicative and additive identity.

For integers r, s where gcd(r, s) = 1, the rings Zrs and Zr × Zs are iso-
morphic. Additively they are cyclic abelian groups of order rs generated by
1 and (1, 1) respectively, and φ : Zrs 7→ Zr×Zs defined by φ(n·1) = n·(1, 1) is
an additive group isomorphism. In a ring R with unity 1, the set of nonzero
elements R∗ will be a multiplicative group if multiplicative inverses exist and
the group is closed under ring multiplication. A multiplicative inverse of
a ∈ R with unity 1 is an element a−1 ∈ R such that aa−1 = a−1a = 1.

Field

Let R be a ring with unity 1. An element u ∈ R is a unit of R if it has
a multiplicative inverse in R. If every nonzero element of R is a unit,
then R is a skew field (or division ring). A field is a commutative
skew field. A noncommutative skew field is called a strictly skew
field.

A subring is a subset of a ring that is a ring under the induced operations
from the whole ring, and a subfield is defined analgously as a subset of a
field. More generally, for any set with a given algebraic structure, any subset
that maintains the same algebraic structure is a substructure.

5.2 Integral Domains

In a traditional number system, the product of two numbers ab can only
equal 0 if either a = 0 or b = 0. This is not necessarily true when we deal
with finite sets. For instance, 6× 2 = 0 in Z12.

0 Divisors

If a and b are two nonzero elements of a ring R such that ab = 0 then
a and b are divisors of 0.

In Zn, the divisors of 0 are precisely those elements of Zn that
are not relatively prime to n. Likewise, this means that if p is prime
then Zp has no divisors of 0.

Within a ring, we have cancellation laws. Since all rings are groups
under addition (i.e. if 〈R,+, ·〉 is a ring then 〈R,+〉 is a group), the additive
cancellation law holds. The multiplicative cancellation law holds in a ring if
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ab = ac or ba = ca, a 6= 0 =⇒ b = c. The cancellation laws hold in a ring
R if and only if R has no divisors of 0.

Integral Domains

An integral domain D is a commutative ring with unity containing
no divisors of zero. The most basic integral domain is Z.

Every field F is an integral domain. Every finite integral do-
main is a field. If p is a prime, then Zp is a field.

5.2.1 The Characteristic of a Ring

Characteristic

If for a ring R a positive integer n exists with n · a = 0 for all a ∈ R,
then the least such positive integer is the characteristic of R. If no
such integer exists, then R is of characteristic 0.

If R is as ring with unity, then the characteristic of R is the
smallest n such that n × 1 = 0 for some n ∈ Z. If no such n exists,
the ring has characteristic 0.

5.3 Fermat’s Theorem and Euler’s Theorem

Fermat’s Little Theorem

If a ∈ Z and p is a prime not dividing a, then p divides ap−1− 1, that
is ap−1 ≡ 1 mod p for a 6≡ 0.

As an example, we can prove that 211,213 − 1 is not divisible by 11. By Fer-
mat’s Theorem, 210 ≡ 1 mod 11 therefore 211,213 − 1 ≡ (210)1,12123 − 1 ≡ 7
mod 11. Primes of the form 2p−1 where p is prime are known as Mersenne
primes.

Euler generalized Fermat’s theorem. His generalization follows from the
principle that the set Gn of nonzero elements of Zn that are not 0 divisors
forms a group under multiplication modulo n. We define the Euler phi-
function ϕ : Z+ 7→ Z+ as ϕ(n) equaling the number of nonzero elements of
Zn that are not divisors of 0.
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Euler’s Theorem

If a is an integer relatively prime to n, then aϕ(n) ≡ 1 mod n.

We can derive several key insights from this.

• Let m be a positive integer and let a ∈ Zm be relatively prime to m.
For each b ∈ Zm, the equation ax = b has a unique solution in Zm.
Likewise, the congruence ax ≡ b mod m has as solutions all integers
in precisely one residue class modulo m.

• Let m be a positive integer and let a, b ∈ Zm. Let d be the gcd of
a and m. The equation ax = b has a solution in Zm if and only if
d divides b. When d divides b, the equation has exactly d solutions
in Zm. More specifically, the solutions are the integers in exactly d
distinct residue classes modulo m.

5.4 The Field of Quotients in an Integral Domain

Not every integral domain is a field. Here we attempt a construction that
places every integral domain within a field of quotients of the integral do-
main. This construction is a generalization of the construction of Z to Q.
We examine how to enlarge an integral domain D into a field of quotients
F .

1. We define what the elements of F are. We use a constrained form of
the Cartesian product

S = {(a, b)|a, b ∈ D, b 6= 0}

where the ordered pair (a, b) represents formal quotient a/b and
S ⊆ D × D. S is still not our field, since different ordered pairs can
represent the same number (i.e. (2, 4) and (3, 6) represent the same
number 1

2). To represent the fact that these ordered pairs are the
same, we define the equivalence relation (a, b) ∼ (c, d) if ad = bc. We
let [(a, b)] denote the equivalence class containing (a, b). F is the set
of all equivalence classes [(a, b)] for all (a, b) ∈ S.

2. We now define the binary operations of addition and multiplication in
F . We take inspiration for these definitions from Z transformed into
Q, where the ordered pair (a, b) represents a/b ∈ Q. Then

[(a, b)] + [(c, d)] = [(ad+ bc, bd)].

31



[(a, b)][(c, d)] = [(ac, bd].

3. We can then check the field axioms for F . This means that addition
and multiplication are both commutative and associate in F . [(0, 1)]
and [(1, 1)] are the additive and multiplicative identities in F respec-
tively. [(−a, b)] is the additive inverse, and [(b, a)] is the multiplicative
inverse so long as (a, b) is not the additive identity. All the distributive
laws hold in F .

4. We conclude by showing F contains D. We show that there is an iso-
morphism i : D 7→ F given by i(a) = [(a, 1)]. i here is an isomorhpism
of D with a subring of F . In other words, i is an isomorphism of D
with i[D], and i[D] is a subdomain of F . From here, we can conclude
that any integral domain D can be embedded in a field F such that
every element in F is the quotient of two elements in D (the field of
quotients).

Uniqueness of the Field of Quotients

Let F be a field of quotients of D and let L be a field containing
D. Then there exists a map ψ : F 7→ L that gives an isomorphism
of F with a subfield of L such that ψ(a) = a for a ∈ D. Therefore,
every field L containing D contains a field of quotients of D, further
implying that any two fields of quotients of D are isomorphic.

5.5 Rings of Polynomials

From basic algebra, we have a general understanding of addition and multi-
plication with respect to polynomials. We use the notation R[x] to denote
the set of all polynomials with coefficients in a ring R. We refer to x as an
indeterminate (not a variable). We also refrain from writing expressions
such as x2 − 4 = 0 since x2 − 4 is not the zero polynomial in Z[x].
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Polynomials

Let R be a ring. Then a polynomial f(x) with coefficients in R is
an infinite formal sum

∞∑
i=0

aix
i

where ai ∈ R and ai = 0 for all but a finite number of values of i. The
largest value of i such that ai 6= 0 is the degree of the polynomial, and
the values of ai are the coefficients of the polynomial. If ∀i, ai = 0
the polynomial has undefined degree.

We are already familiar with how polynomials are added and multiplied.
The set R[x] in an indeterminate x is a ring under polynomial addition and
multiplication, and inherits properties of commutativity and unity from R.

We can also have polynomials in multiple indeterminates. For two indeter-
minates x and y, (R[x])[y] represents the polynomials in y with coefficients
in R[x]. (R[x])[y] is isomorphic to (R[y])[x] and we generally write this as
R[x, y]. We similarly define the ring R[x1, ..., xn] of polynomials in the
n indeterminates xi with coefficients in R.

If an D is an integral domain then so is D[x]. Likewise, if F is a field
then F [x] is an integral domain (note that F [x] is not a field, but since it
is an integral domain we can construct a field of quotients F (x) of F [x]).
F (x1, ..., xn) is the field of quotients of F [x1, ..., xn] and is called the field
of rational functions in n indeterminates over F .

Evaluation Homomorphism for Field Theory

Let F be a subfield of E, α ∈ E, with indeterminate x. Then the
map φα : F [x] 7→ E is a homorphism (known as evaluation at α)
defined by

φα

(
n∑
i=0

aix
i

)
=

n∑
i=0

aiα
i

We now discuss what it means to find a zero of a polynomial. Let F be a
subfield of a field E, and let α be an element of E. Let f(x) =

∑n
i=0 aix

i

be in F [x] and let φα be the evaluation homomorphism. Let f(α) denote
φalpha(f(x)). If f(α) = 0, then α is a zero of f(x).
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5.6 Factorization of Polynomials over a Field

Solving the polynomial zero problem can be complex. We aim here to
unravel a common way of reducing the zero-finding problem. Given two
fields F and E with F ≤ E, suppose f(x) ∈ F [x] factors in F [x] so that
g(x)h(x) = f(x) for g(x), h(x) ∈ F [x], and let α ∈ E. By the evaluation
homomorphism we have

f(α) = φα(f(x)) = φα(g(x)h(x)) = φα(g(x))φα(h(x)) = g(α)h(α).

Thus either g(α) = 0 or h(α) = 0, reducing the problem of finding a zero of
f(x).

The Division Algorithm

Let
f(x) = anx

n + an−1x
n−1 + . . .+ a0

g(x) = bmx
m + bm−1x

m−1 + . . .+ b0

be two elements in F [x], an, bm ∈ F , m > 0. Then there are unique
polynomials q(x) and r(x) in F [x] such that f(x) = g(x)q(x) + r(x),
with r(x) is of degree less than m. We can form this factorization
from standard long division as in elementary algebra.

Factor Theorem

a ∈ F is a factor of f(x) ∈ F [x] if and only if x−a is a factor of f(x). A
nonzero polynomial f(x) ∈ F [x] of degree n can have at most n zeros
in F . Finally, if G is a finite subgroup of the multiplicative group
〈F ∗, ·〉 of F , then G is cyclic; more specifically, the multiplicative
group of all nonzero elements of a finite field is cyclic.

5.6.1 Irreducible Polynomials

A non-constant polynomial f(x) ∈ F [x] is irreducible over F (equiva-
lently an irreducible polynomial over F [x]) if it cannot be expressed as
a product g(x)h(x) of two polynomials, each with degree lower than f . Let
f(x) ∈ F [x], and let f(x) be quadratic or cubic. f(x) is reducible over F if
and only if it has a zero in F .
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The Gauss Lemma

If f(x) ∈ Z[x], then f factors into two polynomials in Q[x] (of degrees
r and s), if and only if it can also be factored into two polynomials in
Z[x], also of degrees r and s. For a polynomial f(x) = anx

n+ . . .+a0,
with a0 6= 0, if f has a zero in Q, then it must have a zero in m, where
m divides a0.

Eisenstein Criterion

Let p ∈ Z be prime. Suppose f(x) = anx
n + ... + a0 is in Z[x]. f(x)

is irreducible over Q if the following 3 conditions hold:

1. an 6≡ 0 mod p

2. ai ≡ 0 mod p, ∀i < n

3. a0 6≡ 0 mod p2

As an corollary of the Eisenstein criterion, we can determine that the follow-
ing polynomial, known as the pth cyclotomic polynomial, is irreducible
over Q, where

Φp(x) =
xp − 1

x− 1
.

5.6.2 Uniqueness of Factorization in F [x]

Polynomials in F [x] can be factored into a product of irreducible polynomi-
als, which are unique except for order and unit.

5.7 Noncommutative Examples - Endomorphisms, Weyl Al-
gebra, Quaternions

We have only so far discussed one noncommutative ring, Mn(F ), the ring
of n × n matrices with entries in F . Here we briefly discuss some more
examples that occur naturally in algebra.

Endomorhpisms

A homomorphism of an abelian group A into itself is known as an
endomorphism. The set of all endomorphisms of A is denoted
End(A). End(A) forms a ring under homomorphism addition and
function compositon. However, it is not generally commutative.
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We illustrate noncommutativity with an example; take the abelian group
〈Z× Z,+〉. Take two elements of End(〈Z× Z,+〉); we can take

φ((m,n)) = (m+ n, 0),

which expands (m,n) ∈ Z× Z into the first factor of (m,n); and

ψ((m,n)) = (0, n),

which collapses the first factor entirely. Then

(φψ)(m,n) = (n, 0)

(ψφ)(m,n) = (0, 0).

Weyl Algebra

Let F have characteristic 0, and let 〈F [x],+〉 be the additive group
of the ring of polynomials with coefficients in F . Consider X ∈
End(F [x]), such that X(f(x) ∈ F [x]) = xf(x). Further consider
Y ∈ End(F [x]) such that Y (f(x) ∈ F [x]) = d

dxf(x).

Y X =
d

dx
xf(x) = f(x) + xY (f(x))

XY = xY (f(x))

The subring generated by X and Y is the called Weyl algebra.

Group Algebra

Let G be a multiplicative group {gi|i ∈ I}, and let R be a commu-
tative ring with unity. Then define RG as the set of all

∑
i∈I aigi.

〈RG,+, ·〉 is a ring, and is known as the group ring of G over R.
If F is a field, FG is the group algebra of G over F .

5.7.1 The Quaternions

The quaternions are an example of a strictly skew field, that is, a noncom-
mutative division ring. We let the set H (after mathematician Sir William
Rowan Hamilton) be R × R × R × R. We reduce our discussion of H to 4
key elements: these are

1 = (1, 0, 0, 0) i = (0, 1, 0, 0)

j = (0, 0, 1, 0) k = (0, 0, 0, 1)
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We allow for scalar multiplication here, i.e.

a1 = (a1, 0, 0, 0) a2i = (0, a2, 0, 0)

a3j = (0, 0, a3, 0) a4k = (0, 0, 0, a4)

We define addition on this group using component-wise addition. For mul-
tiplication we use the trick of the following sequence:

i, j, k, i, j, k.

That is to say, the product of left-to-right adjacent elements is the next
element to the right. The product of right-to-left adjacent elements is the
negative of the element to the left. This arises from the standard cross
product from calculus. In other words,

ij = k jk = i ki = j kj = −i ji = −k ik = −j

Our definition of a product of quaternions is then simply our normal dis-
tributive definition of multiplication. Quaternions are isomorphic to a sub-
ring of M2(C), so multiplication is associative; however, it is (obviously) not
commutative from our definition of multiplication above. The quaternions
form a strictly skew field, as it can be shown that every element of H has
a multiplicative inverse.

Wedderburn’s Theorem

Every finite division ring is a field.

5.8 Ordered Rings and Fields

Omitted for now.

6 Ideals and Factor Rings

6.1 Homomorphisms and Factor Rings

Recall our discussion of ring homomorphisms from earlier, and our definition
of the evaluation homomorphism for rings. Here we explore some more
examples in-depth, and go over the properties of homomorphisms for rings.
Note that all these properties are analogous to those of groups that we
discussed much earlier.
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Projection Homomorphism

Let R1, ..., Rn be rings. For each Ri, the map πi : Ri × ...×Rn 7→ Ri
defined by πi(r1, ..., rn) = ri is the projection homomorphism
onto the ith component.

All the properties of homomorphisms for groups translate to rings as well.
For a homomorphism φ of R into R′, if 0 is in R then φ(0) = 0′ is 0 in
R′. Additionally, φ(−a) = −φ(a). If S ≤ R, then φ(S) ≤ R′; likewise, if
S′ ≤ R′, then φ−1[S′] ≤ R. The main difference: if R has unity 1, then the
unity of R′ is φ(1).

Again analogous to groups, the subring

φ−1[0′] = {r ∈ R|φ(r) = 0′}

is the kernel of φ. If we let H = Ker(φ), we see that φ−1(φ(a)) = a+H =
H + a, where H + a is the coset containing a of the abelian additive group
〈H,+〉.

The additive cosets of the kernel H of a ring R form a ring R/H where
(a+H) + (b+H) = (a+ b) +H and (a+H)(b+H) = (ab) +H.

Ideals

An additive subgroup N of a ring R such that

aN ⊆ N Nb ⊆ N

is known as an ideal; this condition is the ideal property. For
example, nZ is an ideal in Z since we know nZ is a subring, and for
all s,m ∈ Z, s(nm) = (nm)s = n(sm) ∈ nZ. An ideal is the analogue
of a “normal subgroup” for rings.

Let N be an ideal of R. Then the additive cosets of N form the ring R/N
with

(a+N) + (b+N) = (a+ b) +N

(a+N)(b+N) = (ab) +N.

This is the factor ring or quotient ring of R by N .
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Fundamental Homomorphism Theorem (for Rings)

Let N be an ideal of a ring R. Then γ : R 7→ R/N given by γ(x) =
x + N is a ring homomorphism with kernel N . Let φ : R 7→ R′ be
a ring homomorphism with kernel N . Then φ[R] is a ring, and the
map µ : R/N 7→ φ[R] given by µ(x + N) = φ(x) is an isomorphism,
and we have φ(x) = µγ(x).

6.2 Prime and Maximal Ideals

The ring Zp, isomorphic to Z/pZ, is a field for p a prime (it is an example
of a finite field or Galois Field, denoted GF (p)). Thus, a factor of an
integral domain may be a field.

Every nonzero ring R has at least two ideals, the improper ideal R and
the trivial ideal {0}. The factor rings are R/R, which has one element,
and R/{0}, which is isomorphic to R. All other ideals are called proper
nontrivial ideals. If a ring has unity, and N contains a unit, then N = R;
note that this means that a field has no proper nontrivial ideals.

Maximal Ideals

A maximal ideal of R is an ideal M different from R such that there
is no proper ideal N of R properly containing M . Additionally, if R
is a commutative ring with unity, then M is a maximal ideal of R if
and only if R/M is a field. Furthermore, a commutative ring with
unity is a field if and only if it has no proper nontrivial ideals.

As an example, we can show that Zp is maximal in Z. Assume that Zp is
contained within an ideal N of Z. Then there is some x ∈ N which is not in
Zp, i.e. there is an x in N which is not a multiple of p. Then gcd(x, p) = 1,
so ∃ r, s ∈ Z : rx+ sp = 1. Since p and x are both contained within N , the
RHS of the equation is also in N , since (aN)(bN) = (ab)N . Then 1 is in
N , which means N = Z. Therefore Zp is a maximal ideal. To show an ideal
is maximal, we assume it is contained within another ideal, then show that
that ideal is equal to the whole ring.
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Prime Ideals

An ideal N 6= R is a prime ideal if ab ∈ N implies that either a ∈ N
or b ∈ N for a, b ∈ R. R/N is an integral domain if and only if N is
a prime ideal of R.

As an example, prime ideals in the integers correspond to the prime numbers.
Take the ideal pZ in Z. Then if ab ∈ pZ, then p|ab so p|a or p|b, which means
a ∈ pZ or b ∈ pZ, so pZ is a prime ideal. For composite n, the ideal nZ is
not prime, since if n = rs but neither r nor s is n, then rs ∈ nZ but neither
r nor s is in nZ. In summary:

1. An ideal M of R is maximal if and only if R/M is a field.

2. An ideal N of R is prime if and only if R/N is an integral domain.

3. Every maximal ideal of R is a prime ideal.

6.2.1 Prime Fields

For any ring R with unity 1, there is a simple homomorphism from Z to R:

φ(n) = n · 1, n ∈ Z.

Suppose R has characteristic n > 0; then the kernel of φ is nZ and is an
ideal. The kernel of a ring homomorphism is an ideal because the kernel of a
ring homomorphism is a subring of R, and for s ∈ Ker(φ), r ∈ R, φ(rs) = 0′

in R. The image φ[Z] ≤ R is isomorphic to Z/nZ ' Zn. From here, we
can determine that a ring with unity and nonzero characteristic n, it is iso-
morphic to Zn; if the characteristic of the ring is 0, then it is isomorphic to Z.

If the characteristic of a field F is nonzero, then F contains a subring iso-
morphic to Zn. If n is not prime, then F would have zero divisors, which is
impossible; therefore n must be prime. If F is of characteristic zero, it must
contain a subring isomorphic to Z. More specifically, F contains a field of
quotients of this subring that is isomorphic to Q, which we determine from
the uniqueness of the field of quotients. We can conclude that every single
field contains a subfield isomorphic to Zp for prime p or a subfield isomor-
phic to Q; in other words, all fields are built from Zp and Q. We call these
the prime fields.
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6.2.2 Ideal Structure in F [x]

If R is a commutative ring with unity and a ∈ R, the ideal {ra|r ∈ R} is
known as the principal ideal generated by a denoted 〈a〉. An ideal is a
principal ideal if N = 〈a〉 for some a ∈ R. If F is a field, every ideal in F [x]
is principal. This is analogous to the theorem that if G is a cyclic group,
every subgroup of G is cyclic.

Proof: Let N be an ideal of F [x]. Suppose N 6= {0}. Then let g(x) be an
element of N of minimal degree. If the degree of g(x) is 0, then N = 〈1〉 and
is principal. If the degree of g(x) is greater than 0, we can let f(x) be in N .
By the properties of polynomials, f(x) = g(x)q(x) + r(x), where the degree
of r is less than the degree of g. Since f, g ∈ N , f(x) − g(x)q(x) = r(x) is
also in N . Since g has minimal degree in N , r(x) = 0. Then f(x) = g(x)q(x)
thus N = 〈g(x)〉. �
Additionally, an ideal 〈p(x)〉 6= {0} of F [x] is maximal if and only if p(x) is
irreducible over F .

6.3 Gröbner Bases for Ideals

Omitted for now.

7 Extension Fields

7.1 Introduction to Extension Fields

We are at the point now where we can determine that every nonconstant
polynomial has a zero, an incredibly important (and not trivial) pillar of
algebra. A field E is an extension field of F if F ≤ E.

Kronecker’s Theorem

Let F be a field and let f(x) be a nonconstant polynomial in F [x].
Then there exists an extension field E of F and α ∈ E such that
f(α) = 0.

Proof: We know any polynomial f(x) ∈ F [x] can be factored into ir-
reducible polynomials. We can sufficiently find E containing α such that
p(α) = 0, where p(x) is an irreducible factor of f . From this, we know that
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〈p(x)〉 is a maximal ideal, meaning F [x]/〈p(x)〉 is a field. We construct a
map from F into F [x]/〈p(x)〉,

ψ(a) = a+ 〈p(x)〉.

This mapping ψ is a bijective homomorphism. We consider E = F [x]/〈p(x)〉
as an extension field of F . Let α = x + 〈p(x)〉, meaning α ∈ E. Using the
evaluation homomorphism, we can evaluate p(α) as

φα(p(x)) =

n∑
i=0

ai(x+ 〈p(x)〉)i

Note, however, that we are computing in F [x]/〈p(x)〉. Computation in a
quotient field, where x is a member of the coset α, means that (x+〈p(x)〉)i =
xi + 〈p(x)〉. This is because, by the binomial theorem, all the intermediate
terms of the polynomial expansion will be multiples of p(x). Thus

p(α) = p(x) + 〈p(x)〉 = 0

�

Algebraics and Trascendentals

An element α of an extension field F is algebraic over F if f(α) = 0
for a nonzero f(x). If this condition is not met, α is transcendental
over F . In a more traditional context, an element of C that is alge-
braic over Q is called an algebraic number. An element of C that
is transcendental over Q is a transcendental number.

For an extension field E of F , let α ∈ E be algebraic over F . Then there
is a unique, irreducible monic polynomial p(x) in F [x] such that p(α) = 0.
A monic polynomial is one whose leading coefficient is 1. Additionally, if
f(α) = 0, then p(x)|f(x). We denote this irreducible polynomial as irr(α, F ).
The degree of this polynomial is deg(α, F ).

As an example, take α =
√

1 +
√

3 ∈ C. In order to get all coefficients in
Q, we can get α2 = 1 +

√
3 so α4− 2α2 + 1 = 3 and irr(α,Q) = x4− 2x2− 2,

and deg(α,Q) = 4.

7.1.1 Simple Extension Fields

Suppose α is algebraic in F . Then 〈irr(α, F )〉 is the kernel of the evalua-
tion homomorphism φα from F [x] into E. We know that the kernel of a
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homomorphism is a maximal ideal. Then, F [x]/〈irr(α, F )〉 is a field, and
F [x]/〈irr(α, F )〉 ' φα[F [x]] ≤ E. This subfield is the smallest subfield of E
containing F and α,denoted as F (α).

Now suppose α is transcendental in F . Then the evaluation homomorphism
is an isomorphism of F [x] with some subdomain of E. Then φα[F [x]] is not
a field, but it is an integral domain, denoted F [α]. Thus E contains a field
of quotients of F [α], which is also denoted F (α) as above.

We illustrate the above with an example. π is transcendental over Q, so
Q(π) is isomorphic to Q(x), the field of rational functions over the indeter-
minate x.

An extension field is a simple extension of F if E = F (α) for some α ∈ E.
If deg(α, F ) ≥ 1, then every element β of the simple extension field E can
be expressed, for bi ∈ F , as β =

∑n−1
i=0 biα

i.

7.1.2 Algebraic Construction of C from R

Take the polynomial p(x) = x2 + x+ 1 in Z2[x], which is irreducible. There
is an extension field E which contains a zero α of p(x). The elements of
Z2(α) are 0+0α, 1+0α, 0+1α, and 1+1α. This forms a field 0, 1, α, 1+α,
the finite field of four elements, also the Galois field of 4 elements
denoted GF (4). Then in Z2(α), (1 + α)2 = 1 + α2 = 1 + α + 1 = α, since
α2 + α+ 1 = 0. 1 + α2 is irreducible in R[x], and is thus a maximal ideal in
mathbbR[x], making R[x]/〈x2 + 1〉 an extension field of R. Let

α = x+ 〈x2 + 1〉.

Then R[x]/〈x2 + 1〉 = R(α), which consists of all elements a + bα where
a, b ∈ R. Since α2 + 1 = 0, we know that α is equivalent to i ∈ C, and
therefore R(α) ' C, completing the construction of C from R using quotient
fields.

7.2 Vector Spaces

Here we briefly introduce the notion of vector spaces, with relevance to field
theory.
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Vector Space

A vector space over a field F consists of an abelian group V under
addition with the operation of left scalar multiplication such that
∀a, b ∈ F , and ∀α, β ∈ V

1. aα ∈ V

2. a(bα) = (ab)α

3. (a+ b)α = aα+ bα

4. a(α+ β) = aα+ aβ

5. 1α = α

We call the elements of F scalars and the elements of V vectors.

Using this (rather general) definition, we can see that F [x] is a vector space
over F (which follows from intuition we’ve seen in linear algebra). More
importantly, an extension field E of F is a vector space over F , with addi-
tion and scalar multiplication defined as usual. The field of scalars is then
a subset of the vector space.

We also have the following vector space properties, which you may recognize
from analysis classes. If V is a vector space over F , then 0α = α0 = 0, and
(−a)α = a(−α) = −(aα).

Linear Independence and Bases

Suppose we have a subset S = {αi|i ∈ I} of a vector space V . S
spans V if, for all β ∈ V ,

β =

n∑
j=1

ajαij .

Such a vector β is a linear combination of the αij . If there is a finite
subset of V which spans V , then V is finite-dimensional. The vec-
tors in S are linearly independent over F if the sum

∑n
j=1 ajαij = 0

only when every aj is 0. A subset of V that spans V and is linearly
independent is a basis for V . The number of elements in a basis is
the dimension of V .
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We now connect this linear algebra theory to field theory. Let E be an ex-
tension field of F , with α ∈ E algebraic over F . If deg(α, F ) = n, then F (α)
is an n-dimensional vector space over F with basis {1, α, ..., αn−2, αn−1}.
Every element β of F (α) is algebraic over F , and deg(β, F ) ≤ deg(α, F ).

7.3 Algebraic Extensions

Finite Extension

An extension field E of F is an algebraic extension of F if every
element in E is algebraic over F . Additionally, if E is of finite dimen-
sion as a vector space over F with dimension n, then E is a finite
extension of degree n over F . Here, we use the notation that the
degree of E over F is [E : F ] = n. A finite extension field E over F
is an algebraic extension of F .

If K is a finite extension of E, and E is a finite extension of F , then [K :
F ] = [K : E][E : F ]. This comes naturally from linear algebra; if {αi}ni=0 is
a basis for E over F , and {βi}mi=0 is a basis for K over E, then the basis for
K over F will be {αiβj} which has mn elements. In general,

[Fr : F1] =
r−2∏
i=0

[Fr−i : Fr−i−1].

Additionally, if β ∈ F (α), where α ∈ E is algebraic over F , then F ≤
F (β) ≤ F (α) and therefore [F (α) : F ] = [F (α) : F (β)][F (β) : F ] and
deg(β, F ) divides deg(α, F ).

Algebraic Closure

Let E be an extension field of F . Then

F̄E = {α ∈ E|α algebraic overF}

is a subfield of E called the algebraic closure of F in E. From
here, we can easily see that the set of all algebraic numbers is a field,
since this set is the closure of Q in C.

A field F is algebraically closed if every nonconstant polynomial in F [x]
has a zero in F ; equivalently, F is algebraically closed if and only if ev-
ery nonconstant polynomial in F [x] factors into linear factors. This fur-
ther implies that F has no proper algebraic extensions (if it did, it would
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irr(α, f) = x−α for α ∈ E to maintain the property of linear factors, which
would mean α ∈ F ).

The Fundamental Theorem of Algebra

The field C of complex numbers is an algebraically closed field.

Proof: Let f(z) ∈ C[z] have no zero in C. Then 1/f(z) is analytic every-
where. If f 6∈ C, then

lim
|z|−→∞

|f(z)| =∞

This is also intuitive from calculus; if a polynomial has no zeroes then at its
limits it must tend to either positive or negative infinity. Therefore

lim
|z|−→∞

|1/f(z)| = 0,

meaning f is bounded in the plane. Liouville’s theorem from complex analy-
sis determines every bounded entire function must be constant (not covered
in this course); therefore 1/f(z) is constant and f(z) is constant. Thus every
nonconstant polynomial in C[z] just have a zero in C, and C is algeraically
closed. �
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