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Introduction

These are my notes for MATH104 at UC Berkeley - I’ve excluded the topology
introduction here (see my topology notes for those). N = {1, 2, 3, 4, ...} is the
set of natural numbers.
Z = {0,±1,±2, ...} is the set of integers.
Q = {mn | m,n ∈ Z, n 6= 0}.
R = the set of real numbers.

Some basic definitions

Some important tools in the realm of analysis are the inequality: x < y and
absolute value: |x|

Absolute value: for x ∈ R, |x| is the distance from x to 0.

The issue with this definition, upon further observation, is that the word distance
can have several definitions in different contexts. We will see later that we use
the definition of absolute value to give meaning to the intuitive concept of
distance.

Absolute Value (revised): for x ∈ R, |x| =
√
x2

Absolute Value (revised again): for x ∈ R, |x| =

{
x x ≥ 0

−x x < 0

We can then say that the distance from x to y is |x− y|.

Review of Proofs

(1) Prove 12 + 22 + ...+ n2 = n(n+1)(2n+1)
6

Proof: We can proceed through induction. For n = 1, it is immediately clear
that 1×2×3

6 = 1. Now assume that this statement is true for n = m, i.e.∑m
i=1 i

2 = m(m+1)(2m+1)
6 . We proceed by induction.

∑m+1
i=1 i2 =

∑m
i=1 i

2+(m+

1)2 = m(m+1)(2m+1)
6 +(m+1)2 = m(m+1)(2m+1)

6 + 6(m+1)2

6 = m(m+1)(2m+1)+6m2+12m+6
6 =

(m+1)(m+2)(2m+3)
6 . �

1



(2) Prove
√

7 is irrational
Proof: Assume the contrary, that

√
7 ∈ Q. Then we can express

√
7 as m

n ,

where m,n ∈ Z and m and n are coprime. This implies that m2

n2 = 7, and can
be written as m2 = 7n2. Since the LHS and RHS are equivalent, and since 7
is prime (i.e. for prime p, p|ab =⇒ p|a ∨ p|b), we know that for some k ∈ R,
m = 7k =⇒ 7n2 = m2 = 49k2. Simplifying, we then see that n2 = 7k2. By
analagous logic to the previous argument, we see that n must also be divisible by
7. This contradicts our initial assertion that m and n are coprime and therefore√

7 cannot be rational. �

(3) Prove the triangle inequality, namely that |x+ y| ≤ |x|+ |y|
Proof: If we accept the definition of absolute value to be |x| = max{x,−x}, the
proof proceeds as follows. |x| + |y| = max{x,−x} + max{y,−y} = max{x +
y,−x + y, x − y,−x − y} = max{|x + y|, |x − y|} ≥ |x + y|, since addition dis-
tributes across max. �
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The Completeness Axiom

Properties of Absolute Value

−|x| ≤ x ≤ |x|, |x| ≤ a if x ≤ a and −x ≤ a

The Completeness Axiom

Key Question: What are the differences between rational numbers (Q) and
the reals (R)?
Intuitively, we can say that Q has many “gaps” in its set while R is continuous.

Notation: For a < b : a, b ∈ R, (a, b) = {x ∈ R : a < x < b} and
[a, b] = {x ∈ R : a ≤ x ≤ b}.

Definition: Let S ∈ R be a nonempty subset with m ∈ R.
1) m is the maximum of S, i.e. m = max{S}, if s ≤ m∀s ∈ S and m ∈ S.
2) m is the minimum of S, i.e. m = min{S} if s ≥ m∀s ∈ S and m ∈ S.

The issue with the ideas of max and min is that they only tell us whether or
not a set has a maximum or minimum element, when in reality we’re far more
interested in what these sets are bounded by.

Definition: Define a nonempty S ⊆ R, m ∈ R.
1) m is an upper bound of S if s ≤ m∀s ∈ S. S is bounded above.
2) m is a lower bound of S if s ≥ m∀s ∈ S. S is bounded below.
3) If S is both bounded above and bounded below, we simply say that S
is bounded.
4) m is the supremum of S (m = supS) if m is the smallest upper bound.
5) m is the infimum of S (m = inf S) if m is the largest lower bound.

This gives us our full completeness axiom as follows:

Any nonempty subset of R that is bounded above admits supremum.

Note: Consider S = {x ∈ Q : x2 < 2} = (−
√

2,
√

2) ∪ Q as a subset of Q.
Observe that S 6= ∅. S has an upper bound of 100, but supS doesn’t exist as a
rational number.

Archimedian Property

For each a > 0, and for each b > 0, a, b ∈ R, ∃ n ∈ N : na > b.

The Denseness of Q
Any real number can be approximated by a rational number that is infinitely
close to the value of the real (but not exactly equal). This gives rise to the
denseness of Q, which states that ∀a < b, a, b ∈ R, ∃ r ∈ Q : a < r < b.

3



Limits of Sequences

A sequence is a set whose domain is {n ∈ Z : n ≥ m} where m is either 1 or
0, i.e. a set of values who can be indexed as a function of the positive integers
or naturals. They can be denoted as (sn)∞n=m.

The limit of a sequence (sn) is a real number that the values of the sequence
approach for large n.

Question: What is the limit of an = (−1)n?

The issue with this question is that for even large n the answer is 1 and for
odd large n the answer is −1. We need a precise definition of limits to get a
good answer here.

Definition: A sequence (sn) of real numbers converges to s ∈ R if for each
ε > 0, ∃ N : n > N =⇒ |sn − s| < ε. If (sn) does converge, we write
limn−→∞ s(n) = s. The number s is then the limit of the sequence. A sequence
that doesn’t converge diverges.

Some Important Limits:
1. lim 1

n2 = 0
2. The sequence (an) where an = (−1)n does not converge.
3. The sequence cos(nπ3 ) does not converge.

4. The sequence n
1
n appears to converge to 1.

5. The sequence (bn) where bn = (1 + 1
n )n converges to e.

It is important to note as well that limits are unique. This means that if
lim sn = s and lim sn = t then s = t. This means that if a limit exists for a
function, then it is the only limit (limits can’t change arbitrarily).

Proof: Consider ε > 0. By the definition of limit, ∃ N1 : n > N =⇒ |sn − s| <
ε
2 . Likewise, for the other limit t, ∃ N2 : n > N2 =⇒ |sn − t| < ε

2 . For
N = max{N1, N2}, the Triangle Inequality tells us |s− t| = |s− (sn+ sn)− t| =
|(s− sn) + (sn − t)| ≤ |s− sn|+ |sn − t| ≤ ε

2 + ε
2 = ε. �
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A Discussion about Proofs

Here are some examples of rigorous mathematical proofs of the limits from the
last section. We care about the formal proof, where we can show p =⇒ q
directly using predetermined definitions of ε and N . Although in the final proof
it’s not always obvious how we got those values, we can informally derive those
values and work backwards using our formal proof.

Example 1: Prove lim 1
n2 = 0

Proof: Our task begins with setting some ε > 0 and ultimately ending with
| 1n2 −0| < ε. In between, we should be trying to find some N where n > N =⇒
| 1n2 − 0| < ε. In these cases, we will often try and work backwards from the
RHS so long as each step is reversible along the way. Here, we can multiply
both sides of the inequality by n2 and divide both sides by ε. We then get
1
ε < n2 or n > 1√

ε
. If our steps are reversible (which they are), we see that

n > 1
ε =⇒ | 1n2 − 0| < ε, suggesting we set N = 1

ε . �
Proof: (Formal). Let ε > 0. Let N = 1√

ε
. Then n > N =⇒ n > 1√

ε
=⇒

n2 > 1
ε =⇒ ε > 1

n2 . Therefore n > N =⇒ | 1n2 − 0| < ε. This proves that
lim 1

n2 = 0. �

Example 2: Prove lim 3n+1
7n−4 = 3

7
Proof: Again, begin with ε > 0, i.e. we are trying to find the minimum
n : | 3n+1

7n−4 −
3
7 | < ε. This can be simplified to | 21n+7−21n+12

7(7n−4) | = | 19
7(7n−4) | < ε.

Since the denominator must be positive for n ∈ N, we can remove the absolute
value and solve for n, which gives us 19

49ε + 4
7 < n. Since our steps are reversible,

we can set N = 19
49ε + 4

7 or any number larger than that quantity. �
Proof: (Formal). Let ε > 0. Let N = 19

49ε + 4
7 . Then n > N =⇒ n > 19

49ε + 4
7 ,

therefore 7n > 19
7 + 4 =⇒ 19

7(7n+4 < ε =⇒ | 3n+1
7n−4 −

3
7 | < ε, therefore

lim 3n+1
7n−4 = 3

7 . �

Example 3: Prove lim 4n3+3n
n3−6 = 4

Proof: For each ε > 0, we need to determine the minimum n : | 4n
3+3n
n3−6 − 4| < ε.

Since n > 1, we can drop the absolute values. However, in this case it’s very
difficult to solve for n in terms of ε. Instead, we can find an estimate. We

can do this by realizing that 4n3+3n
n3−6 can be simplified to some constant times

1
n2 . We can find an upper bound on the numerator and a lower bound on the
denominator to find this constant. Realize that for n > 1, 3n + 24 ≤ 27n and

that n3 − 6 ≥ n3

2 for large n. We then get 54
n < ε or n >

√
54
ε . �

Proof: (Formal). Let ε > 0 and N = max{2,
√

54
ε }. Then n > N =⇒ n >√

54
ε , hence 27n

n3/2 < ε. Since n > 2, we know that n3

2 ≤ n3 − 6 and also

27n > 3n+ 24. Thus n > N =⇒ |4n
3+3n
n3−6 − 4| < ε as desired. �
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Limit Theorems for Sequences

Theorem: Convergent sequences are bounded.

Proof: Let (sn) be a convergent sequence, and let s = lim sn. Let ε = 1,
and take N ∈ N : n > n =⇒ |sn − s| < 1. From the traingle inequality
we see n > N =⇒ |sn| < |s| + 1. M := max{|s| + 1, |s1|, ..., |sn|}. Then
|sn| ≤M∀n ∈ N, so (sn) is bounded. �

Theorem: If the sequence (sn) converges to s and k ∈ R, then the sequence
(ksn) converges to ks. That is, lim(ksn) = k · lim sn.

Proof: Assume k 6= 0, since this result is trivial. Let ε > 0 and note that
we need to show that |ksn − ks| < ε for large n. Since lim sn = s, ∃ N : n >
N =⇒ |sn − s| < ε

|k| . Then, n > N =⇒ |ksn − ks| < ε. �

Theorem: If (sn converges to s (tn) converges to t, then (sn + tn) converges
to s+ t. That is, lim(sn + tn) = lim sn + lim tn.

Proof: Let ε > 0; we need to show |sn + tn − (s + t)| < ε for large n. From
the triangle inequality we get |sn − s| + |tn − t| ≥ |sn + tn − (s + t)|. Then ∃
N1 : n > N1 =⇒ |sn − s| < ε

2 and ∃ N2 : n > N2 =⇒ |tn − t| < ε
2 . Then if

N = max{N1, N2}, n > N =⇒ |sn + tn − (s+ t)| ≤ |sn − s|+ |tn − t| < ε. �

Theorem: If (sn) converges to s and (tn) converges to t, then (sntn) con-
verges to st. That is, lim(sntn) = (lim sn)(lim tn).

Proof: Let ε > 0. ∃ M > 0 : |sn| ≤ M∀n. Since lim tn = t ∃ N1 : n > N1 =⇒
|tn − t| < ε

2M . Since lim sn = s =⇒ ∃ N2 : n > N2 =⇒ |sn − s| < ε
2(|t|+1) .

Now if N = max{N1, N2}, n > N =⇒ |sntn−st| ≤ |sn| · |tn− t|+ |t| · |sn−s| ≤
M · ε

2M + |t| · ε
2(|t|+1) < ε. �

Theorem: If (sn) converges to s, if sn 6= 0 for all n, and if s 6= 0, then
(1/sn) converges to 1/s.

Proof: Let ε > 0. We know that for a convergent sequence ∃m > 0 : |sn| ≥ m∀n.
Since lim sn = s, ∃ N : n > N =⇒ |s − sn| < ε · m|s|. Then n > N =⇒
| 1sn −

1
s | =

|s−sn|
|sns| ≤

|s−sn|
m|s| < ε. �

Theorem: Suppose (sn) converges to s and (tn) converges to t. Then lim tn
sn

converges to t
s .

Theorem: lim( 1
np ) = 0.

Theorem: lim an = 0 if |a| < 1.
Theorem: limn1/n = 1.
Theorem: lim a1/n = 1 if a > 0.
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Definition: For a sequence (sn), we write lim sn = +∞ provided for each
M > 0 there is a number N such that n > N =⇒ sn > M . In this case we say
the sequence diverges to +∞. We write lim sn = −∞ provided for each M < 0
there is a number N such that n > N =⇒ sn < M .

Theorem: Let (sn) and (tn) be sequences such that lim sn = +∞ and lim tn >
0. Then lim sntn = +∞.

Proof: Let M > 0. Select a real number m such that 0 < m < lim tn. It is clear
that ∃N1 : n > N1 =⇒ tn > m. Since lim sn = +∞, ∃N2 : n > N2 =⇒ sn >
M
m . Put N = max{N1, N2}. Then n > N =⇒ sntn >

M
m ·m = M . �

Theorem: For a sequence (sn) of positive real numbers, we have lim sn = +∞
if and only if lim 1

sn
= 0.
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Monotone Sequences and Cauchy Sequences

So far, we’ve dealt with scenarios where we can check whether a certain se-
quences converges to a limit. However, in reality we’re often faced with scenar-
ios where we don’t know what the limit is beforehand.

Definition: A sequence (sn) of real numbers is called an increasing sequence if
sn ≤ sn+1 ∀n, and (sn) is called a decreasing sequence if sn ≥ sn+1 ∀n. Induc-
tively, this means that for an increasing sequence m > n =⇒ sm ≥ sn, and a
symmetric conclusion can be drawn for decreasing sequences. A sequence that
is increasing or decreasing can be called monotone or monotonic.

Theorem: All bounded monotone sequences converge.

Proof: Let (sn) be a bounded sequence. Let S := {sn : n ∈ N}, and u := supS.
Since S is bounded, u ∈ R. We will now prove that lim sn = u.
Let ε > 0. u− ε is not an upper bound for S, so we know that ∃ N : n > N =⇒
sN > u − ε. By the definition of monotonic sequences, n > N =⇒ sN ≤ sn.
Of course, sn ≤ u for all n, so n > N =⇒ u − ε < sn ≤ u, implying that
|sn − u| < ε. Therefore lim sn = u. �

Decimals
We have to be careful with how we represent real numbers. Real numbers are
simply decimal expansions, but there are certain subtleties concerning their no-
tation (i.e. different decimal expansions can represent the same real number).
For now, let’s only look at nonnegative real numbers.

Suppose we have a nonnegative real number K.d1d2d3...dn, where K ∈ Z ≥
0, and dj ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Then let sn = K + d1

10 + d2
102 + ... + dn

10n .
Then (sn) is an increasing sequence of real numbers, and is bounded (by K+1).
Therefore, by the aforementioned theorem, this number must converge to a real
number K.d1d2d3.... For example, the real number 3.3333... can be represented
as limn−→∞(d+ 3

10 + ...+ 3
10n ).

We can use the fact that for |r| < 1, the sum of limn−→∞ a(1 + r + r2 +
... + rn) = a

1−r to show that this limit is 10
3 , as expected. However, looking at

the sequence lim( 9
10 + ... + 9

10n ) = 0.9999999... = 1. 1.00000... and 0.999999...
are the same number!

Theorem:
i. If (sn) is an unbounded increasing sequence, then lim sn = +∞.
ii. If (sn) is an unbounded decreasing sequence, then lim sn = −∞.

Proof: i. Let (sn) be an unbounded sequence increasing sequence. Let M > 0.
Since the set {sn : n ∈ N} has a lower bound in s1, it must be unbounded
above. Then for some N ∈ N, we have sN > M . It’s immediately obvious that
n > N =⇒ sn ≥ sN > M . Then lim sn = +∞. A symmetric proof follows for
ii. �
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Corrolary: If sn is monotone, then the sequence either converges or diverges
to either +∞ or −∞. Therefore lim sn is always meaningful for monotone se-
quences.

Definition: Let (sn) be a sequence in R. Define the following:
1) lim sup sn = limN−→∞ sup{sn : n > N}.
2) lim inf sn = limN−→∞ inf{sn : n > N}.

Note: These definitions make no mention of whether or not sn is bounded. We
use the following conventions: if (sn) is not bounded above, then lim sup sn =
+∞, and if it is not bounded below then lim inf sn = −∞.

A clarification is necessary here: lim sup sn doesn’t have to be the same as
sup{sn : n ∈ N}, but lim sup sn ≤ sup{sn : n ∈ N}. Some elements of sn can
be much, much larger than lim sup sn – lim sup sn is the smallest value of sn
that an infinite number of sn’s can get close to. If this seems confusing, that’s
because it is, but it will be clarified in later sections. For now, we need to say
that lim sn exists iff lim inf sn = lim sup sn.

Theorem: Let (sn) be a sequence in R.
i. If lim sn is defined [a real number, ±∞], then lim inf sn = lim sup sn =

lim sn.
ii. If lim sup sn = lim inf sn, then lim sn is defined and lim sn = lim sup sn =

lim inf sn.

If sn converges, then lim inf sn = lim sup sn by the above theorem, so for large
N the numbers sup{sn : n > N} and inf{sn : n > N} are close together. This
means that all numbers in the set {sn : n > N} are close together. This concept
will be very important later in this course.

Definition: A sequence (sn) of real numbers is a Cauchy sequence if for each
ε > 0, ∃ N : m,n > N =⇒ |sn − sm| < ε.

Lemma: Convergent sequences are Cauchy sequences.
Proof: Suppose lim sn = s. The idea is that since the terms for large n are
close to s, they are also close to each other. In other words, letting ε > 0,
n > N =⇒ |sn − s| < ε

2 and m > N =⇒ |sm − s| < ε
2 , so m,n > N =⇒

|sn − sm| = |sn − s+ s− sm| ≤ |sn − s|+ |s− sm| < ε �

Lemma: Cauchy sequences are bounded.
Proof: Apply an analgous proof as the 1st Theorem from the previous lecture
with the definition of Cauchy sequences. �

Theorem: A sequence is a convergent sequence if and only if it is a Cauchy
sequence.
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Subsequences

Definition: Suppose (sn) is a sequence. A subsequence of the sequence is a
sequence of the form (tk), where for each k∃nk : n1 < ... < nk < nk+1 < ... and
tk = snk

. In essence, a subsequence is a subset of (sn) selected in order.
A more formal definition: view the sequcne (sn) as a function s with domain

N. For the subset {n1, ...}, there is another function σ where σ(k) = nk, i.e. it
”selects” a subset of N in order. Then the subsequence of s corresponding to
the function σ is t = s ◦ σ. That is,

tk = t(k) = s ◦ σ(k) = s(σ(k)) = s(nk) = snk
, k ∈ N.

Example 1: Let sn = (−1)nn2. Then (sn) = (−1, 4,−9, 16,−25, 36, ...). Take
the subsequence (4, 16, 36, 64...). The subsequence is then snk

, where nk = 2k,
so snk

= 4k2 and the selection function is σ = 2k.

Theorem: Let (sn) be a sequence.

i. If t ∈ R, ∃ a subsequence of (sn) converging to t iff the set {n ∈ N :
|sn − t| < ε} is infinite for all ε > 0.
ii. If the sequence (sn) is unbounded above, it has a subsequence with
limit +∞.
iii. If the sequence (sn) is unbounded below, it has a subsequence with
limit −∞.

Example 2: We can show that Q can be represented as a sequence (rn). In
set theory, we could use this to say that Q is countable. There are an infinite
number of rationals in the interval (a− ε, a+ ε) for any ε > 0, so based on the
above theorem we can say that for any real number a, there exists a subsequence
of Q converging to a. We referred to this much earlier when we discussed the
”denseness of Q.”

Theorem: If the sequence (sn) converges, then every subsequence converges
to the same limit.
Proof: Let (snk

) be a subsequence of (sn). nk ≥ k, which can be easily shown
by induction. Let s = lim sn, ε > 0. Then ∃ N ∈ N : n > N =⇒ |sn − s| < ε.
Now k > N =⇒ nk > N , so |snk

− s| < ε, so lim snk
= s. �

Theorem: Every sequence (sn) has a monotonic subsequence.

The Bolzano-Weierstrauss Theorem

Theorem: Every bounded sequence has a convergent subsequence.
Definition: Let (sn) be a sequence in R. A subsequential limit is any real
number or ±∞ that is the limit of some subsequence (snk

).
Theorem: Let (sn) be a sequence. There exists a monotonic subsequence
whose limit is lim sup sn and there exists a monotonic subsequence whose limit
is lim ∈ sn.
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Theorem: Let (sn) be any sequence in R, and let S denote the set of subse-
quential limits of (sn).

i. S is nonempty.
ii. supS = lim sup sn and inf S = lim inf sn.
iii. lim sn exists iff S has exactly one element.

Theorem: Let S denote the set of subsequential limits of a sequence (sn).
Suppose (tn) is a sequence in S ∪ R and that t = lim tn. Then t belongs to S.

lim sup’s and lim inf’s

Let (sn) be any sequence of real numbers. Let S be the set of subsequential
limits of (sn). Recall that

lim sup sn = lim sup{sn : n > N} = supS

lim inf sn = inf sup{sn : n > N} = inf S

Theorem: If (sn) converges to a positive s ∈ R and (tn) is any sequence, then
lim sup sntn = s lim sup tn.

Theorem: Let (sn) be any sequence of nonzero real numbers. Then

lim inf |sn+1

sn
| ≤ lim inf |sn|1/n ≤ lim sup |sn|1/n ≤ lim sup |sn+1

sn
|

Corrolary: If lim | sn+1

sn
| exists and equals L, then lim |sn|1/n exists and equals

L.
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Some Topological Concepts in Metric Subspaces

Definition: Let S be a set and let d be a function that is defined for all pairs
(x, y) of elements of S satisfying

D1. d(x, x) = 0 ∀x ∈ S and d(x, y) > 0 for distinct x, y ∈ S.
D2. d(x, y) = d(y, x) ∀x, y ∈ S.
D3. d(x, z) ≤ d(x, y) + d(y, z) ∀x, y ∈ S.

We call d a metric or distance function on S. S is a metric space is a set com-
bined with the metric on it. More formally, the metric space is (S, d) since S
may have multiple metrics.

Definition: A sequence (sn) in a metric space (S, d) converges to s in S if
limn−→∞ d(sn, s) = 0. A sequence (sn) in S is Cauchy if

∀ε > 0∃N : m,n > N =⇒ d(sm, sn) < ε.

A metric space is complete if every Cauchy sequence in S converges to an ele-
ment of S.We use (x (n)) to refer to a sequence instead of (xn).

Lemma: A sequence (x(n)) in Rk converges iff ∀j = 1, 2, ..., k the sequence

(x
(n)
j ) converges in R. A sequence (x(n)) in Rk is a Cauchy sequence iff each

(x
(n)
j ) is Cauchy in R.
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Series

Summation Notation

We use the symbol
∑n
k=m ak as a shorthand for the summation am + am+1 +

...+an−1+an. We use the notation
∑∞
k=m ak to describe an infinite sum, which

we assign meaning to below.

Infinite Series

To give meaning to
∑∞
k=m we consider the sequence (sn)∞n=m of partial sums,

where

sn = am + am+1 + ...+ an−1 + an =

n∑
k=m

ak

The infinite series
∑∞
k=m converges provided the sequence (sn) of partial sums

converges to S ∈ R, where S is also the limit of the series. In other words,

∞∑
n=m

an = S ⇐⇒ lim sn = S ⇐⇒ lim
n−→∞

(
n∑

k=m

ak = S

)
We say a sequence diverges to +∞ if its sequence of partial sums has a limit of
+∞. A symmetric definition follows for −∞. If all the terms an of the series∑
an are nonnegative, then the sequence of partial sums is increasing and must

either converge or diverge to +∞. We can use this fact to state that
∑
|an| is

meaningful for any (an). If
∑
an converges, we call the series absolutely con-

vergent. All absolutely convergent series are convergent.

Example 1: A series of the form
∑
arn. For r 6= 1, the partial sums sn

are
n∑
k=0

ark = a
1− rn+1

1− r

If |r| < 1, then limn−→∞ rn+1 = 0, so limn−→∞ sn = a
1−r . Then

∞∑
n=0

arn =
a

1− r
, |a| < 1

Consider a fixed positive p ∈ Rn. Then

∞∑
n=1

1

np
converges if and only if p > 1.

Definition: We say a series
∑
an satisfies the Cauchy criterion if its sequence

of partial sums (sn) is a Cauchy sequence:

∀ε > 0∃N ∈ N : m,n ∈ N > N =⇒ |sn − sm| < ε

13



Without loss of generality, we can rewrite this as

∀ε > 0∃N ∈ N : n ≥ m > N =⇒

∣∣∣∣∣
n∑

k=m

ak

∣∣∣∣∣ < ε

Theorem: A series converges iff it satisfies the Cauchy criterion.
Corrolary: If a series

∑
an converges, then lim an = 0.

Comparison Test

Let
∑
an be a series where an ≥ 0∀n.

i. If
∑
an and |bn| ≤ an∀n, then

∑
bn converges.

ii. If
∑
an = +∞ and bn ≥ an∀n, then

∑
bn = +∞.

Corrolary: Absolutely convergent series are convergent.

Proof: Suppose
∑
bn is absolutely convergent. Then

∑
an converges where

an = |bn|∀n. Then trivially |bn| ≤ an so
∑
bn converges. �

Ratio Test

A series
∑
an of nonzero terms

i. Converges absolutely if lim sup |an+1/an| < 1
ii. diverges if lim inf |an+1/an| > 1
iii. Else lim inf |an+1/an| ≤ 1 ≤ lim sup |an+1/an|, the test is not valuable.

Root Test

Let
∑
an be a series and let α = lim sup |a|1/n. Then

∑
an

i. Converges absolutely if α < 1
ii. Diverges if α > 1.

14



Alternating Series and Integral Tests

We can check convergence and divergence by comparing the partial sums of a
series with common integrals.

Example 1: We show that
∑

1
n = +∞. Examine the following diagram:

It is evident that for n ≥ 1,
∑n
k=1

1
k is the sum of the areas of the first n

rectangles of 1
k . This quantity is greater than the area under the curve from 1

to n+ 1, so we can put a lower bound on this area of∫ n+1

1

1

x
dx = ln(n+ 1)

Since limn−→∞ ln(n+ 1) = +∞, we can conclude that
∑

1
n = +∞.

Example 2: We show
∑

1
n2 converges. Examine the following diagram:

From this image, we can see that

n∑
k=1

1

k2
= sum of the areas of the first n rectangles ≤ 1 +

∫ n

1

1

x2
dx = 2− 1

n
< 2

15



From this we can see that the sequence of partial sums is increasing and upper
bounded by 2.
Integral Test: Use the integral tests if:

1. None of the other test methods apply.
2. All the terms of the series are nonnegative.
3. There is a nice decreasing function f where f(n) = an for all n.
4. The integral of f is easy to either calculate or estimate.

The Alternating Series Theorem
Theorem: If a1 ≥ ... ≥ an and lim an = 0, then the alternating series∑

(−1)n+1an converges. Moreover, the partial sums sn =
∑n
k+1(−1)k+1ak sat-

isfy |s− sn| ≤ an∀n.
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Continuous Functions

The salient features of a function f are the set on which f is defined, known as
the domain of f (dom(f)), and the assignment, rule or formula specifying f(x)
on each x ∈ dom(f).

We work with real-valued functions, functions where dom(f) ⊆ R and
f(x) ∈ R∀x ∈ dom(f). We often assume that the function’s domain, if not
explicitly stated, is the natural domain, i.e. the largest D ⊆ R where f is well-
defined. We begin by defining continuity in terms of sequences along with the
usual ε− δ definition.

Definition: Let f be a real-valued function whose domain is a subset of
R. f is continuous at x0 ∈ dom(f) if ∀(xn) ∈ dom(f) converging to x0,
limn f(xn) = f(x0). If f is continuous at each point in S ⊆ dom(f), we say
that f is continuous on S. f is continuous if it is continuous on dom(f).

Theorem: Let f be a real-valued function whose domain is ⊆ R. Then f is
continuous at x0 ∈ dom(f) if and only if

∀ε > 0∃δ > 0 : x ∈ dom(f) ∨ |x− x0| < δ =⇒ |f(x)− f(x0)| < ε

Theorem: Let f be a real-valued function with dom(f) ⊆ R. If f is continuous
at x0 ∈ dom(f), then |f | and kf , k ∈ R, are continuous at x0.

Remember that for real-valued functions f and g, the following apply:
1. (f + g)(x) = f(x) + g(x); dom(f + g) = dom(f) ∩ dom(g)
2. (fg)(x) = f(x)g(x); dom(fg) = dom(f) ∩ dom(g)

3. (f/g)(x) = f(x)
g(x) ; dom(f/g) = dom(f) ∩ {x ∈ dom(g) : g(x) 6= 0}

4. f ◦ g(x) = f(g(x)); dom(f ◦ g) = {x ∈ dom(g) : g(x) ∈ dom(f)}
5. max(f, g)(x) = max{f(x), g(x)}; dom(max(f, g)) = dom(f)∩dom(g)
6. min(f, g)(x) = min{f(x), g(x)}; dom(min(f, g)) = dom(f)∩dom(g)

If f and g are real-valued and continuous at x0, then f + g, fg, and f/g are
continuous at x0 if g(x0) 6= 0 in the third case. If g is continuous at x0 and f is
continuous at g(x0) then f ◦ g is continuous at x0.

17



Properties of Continuous Functions

A real valued function is bounded if {f(x) : x ∈ dom(f)} is bounded, i.e.
|f(x)| ≤M ∈ R∀x ∈ dom(f).

Theorem: Let f be a continuous real-valued function on a closed interval [a, b].
Then f is a bounded function. Additionally, f assumes its minimum nad max-
imum values on [a, b], i.e.

∃x0, y0 ∈ [a, b] : f(x0) ≤ f(x) ≤ f(y0)∀x ∈ [a, b]

Proof: Assume f is unbounded on [a, b]. Then for each n ∈ N∃xn ∈ [a, b] :
f(xn) > n. By the Bolzano-Weierstrass theorem, (xn) has a subsequence (xnk

)
that converges to some x0 ∈ [a, b]. Since f is continuous at x0, lim(xnk

) = x0;
however, lim(xnk

) = +∞ as well. Contradiction, so f is bounded.
Next, let M = sup{f(x) : x ∈ [a, b]}. M is finite. ∀n ∈ N,∃yn ∈ [a, b] :
M − 1

n < f(yn) ≤ M . Then lim f(yn) = M . By Bolzano-Weierstrass, ∃(ynk
),

a subsequence of (yn) which converges to y0 ∈ [a, b]. Since f is continuous
at y0, lim f(ynk

) = y0. Since f(ynk
) is a subsequence of f(yn), lim f(ynk

) =
lim f(yn) = M so f(y0) = M . Therefore f has a maximum at M . We can apply
a symmetric argument for −f to achieve the minimum. �

Intermediate Value Theorem: If f is a continuous real-valued function
on some interval I, then f has the intermediate property on I: Whenever
a, b ∈ I, a < b and f(a) < y < f(b) or f(b) < y < f(b), there is some
x ∈ (a, b) : f(x) = y.

Corrolary: If f is a continuous real-valued function on some interval I, then
f(I) = {f(x), x ∈ I} is also an interval or single point.

Theorem: Let f be a continuous strictly increasing function on some interval
I. Then f(I) is an interval J and f−1 is a function with domain J . Then f−1

is a continuous strictly increasing function on J .

Theorem: Let f be a one-to-one continuous function on an interval I. Then
f is either strictly increasing or strictly decreasing.

18



Uniform Continuity

Let f be a real-valued function where dom(f) ⊆ R. Recall that f is continuous
on S ⊆ R if and only if

∀x0 ∈ S, ε > 0,∃δ > 0 : x ∈ dom(f), |x− x0| < δ =⇒ |f(x)− f(x0)| < ε

It’s evident here that the value we choose for δ is dependent on ε > 0 and also
on our choice of x0. It would be really useful to know when we can find δ solely
based on knowledge of ε > 0 and S, without having to make rough estimates
for each x 0. Functions that have this property are called uniformly continuous.
For clarity, we now refer to x as x and x0 as y.

Definition: Let f be a real-valued function defined on S ∈ R. Then f is
uniformly continuous on S if

∀ε > 0∃δ > 0 : x, y ∈ S, |x− y| < δ =⇒ |f(x)− f(y)| < ε

Theorem: If f is continuous on a closed interval [a, b], then f is uniformly
continuous on [a, b]

Theorem: If f is uniformly continuous on a set S and (sn) is a Cauchy se-
quence in S then (f(sn)) is a Cauchy sequence.

For the next theorem we use extensions of functions. f̃ is an extension of f
if dom(f) ⊆ dom(f̃) and f(x) = f̃(x) ∀x ∈ dom(f).

Theorem: A real-valued function f on (a, b) is uniformly continuous on (a, b)
if and only if it can be extended to a continuous function f̃ on [a, b].

Theorem: Let f be a continuous function on an interval I, bounded or un-
bounded. Let I◦ be the interval obtained by removing from I any endpoints in
I. If f is differentiable on I◦ and if f ′ is bounded on I◦, then f is uniformly
continuous on I.
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Limits of Functions

We’ve stated that the definition of a function f(x) continuous at a is that the
values of f(x) approach f(a), x ∈ dom(f). We can easily translate this notion
to that of limits, i.e. limx−→a f(x) = f(a).

Definition: Let S ⊆ R. Let a ∈ R or ±∞ that is the limit of some sequence in
S and let L be some real number or ±∞. Then limx−→a f(x) = L if

f is a function defined on S(1)

and
for every sequence (xn) in S with limit a, lim

n−→∞ f(xn) = L(2)

Here we define the notation limx−→aS as the limit as x tends to a along S.
From here, it is easy to see that a function f is continuous at a in dom(f) = S iff
limx−→aS f(x) = f(a). Additionally, remember that limits of sequences, should
they exist, are unique.

Definition:
a. For a ∈ R and some function f we write limx−→a f(x) = L provided
limx−→aS f(x) = L for some S = J \{a} where J is an open interval
containing a. This limit is called the two-sided limit of f at a. This
definition allows us to look for a limit even if f is not defined at a. The
only time when f(a) = limx−→a f(x) is when f is defined on an open
interval containing a and f(x) is continuous at a.
b. For a ∈ R and a function f we write limx−→a+ f(x) = L provided
limx−→aS f(x) = L for some open interval S = (a, b). limx−→a+ f(x) is
the right-hand limit of f at a. Again f need not be defined at a.
c. For a ∈ R and a function f we write limx−→a− f(x) = L provided
limx−→aS f(x) = L for some open interval S = (c, a). limx−→a− f(x) is
the left-hand limit of f at a.
d. For a function f we write limx−→∞ f(x) = L provided limx−→∞S f(x) =
L for some S = (c,∞). Analogously, we write limx−→−∞ f(x) = L pro-
vided limx−→−∞S f(x) = L for some S = (−∞, c).

Theorem: Let f1 and f2 be functions for which the limits L1 = limx−→aS f1(x)
and L2 = limx−→aS f2(x) exist and are finite. Then

i. limx−→aS (f1 + f2)(x) = L1 + L2

ii. limx−→aS (f1f2)(x) = L1L2

iii. limx−→aS (f1/f2)(x) = L1/L2 provided L2 6= 0 and f2(x) 6= 0, x ∈
S.

The proofs for the above are simple and follow from our limit properties.

Theorem: Let f be a function for which the limit L = limx−→aS f(x) exists
and is finite. If g is a function defined on {f(x) : x ∈ S} ∪ {L} that is continu-
ous at L, then limx−→aS g ◦ f(x) exists and equals g(L).

20



Note that it is essential that g be continuous at L (for a reason why, reference
f(x) = 1 +x sin(πx ) and g(x) = 4 if x 6= 1 and g(x) = −4 for x = 1, and observe
what happens for (xn) = 2

n .

Theorem: Let f be a function defined on a subset S of R, let a be a real number
that is the limit of some sequence in S, and let L ∈ R. Then limx−→aS f(x) = L
iff

∀ε > 0∃δ > 0 : x ∈ S, |x− a| < δ =⇒ |f(x)− L| < ε.

Corrolary: Let f be a function defined on J \{a} for some open interval J
containing a and let L ∈ R. Then limx−→a f(x) = L iff

∀ε > 0∃δ > 0 : 0 < |x− a| < δ =⇒ |f(x)− L| < ε

Corrolary: Let f be a function defined on (a, b), and let L be a real number.
Then limx−→a+ f(x) = L iff

∀ε > 0∃δ > 0 : a < x < δ + a =⇒ |f(x)− L| < ε.

Let’s use the above corrolaries to draw a generalization. Let L be a real number
or ±∞, and let’s now examine the limit limx−→s where s can take on the values
a, a±,±∞. Note that this gives us 15 different combinations. We can put all of
these definitions in the form

∀(·)∃(·) : (·) =⇒ (·).

If L is a finite value, then the first and last blanks are ε > 0 and |f(x)−L| < ε,
respectively.
If L is +∞, then the first blank is M > 0 and the last blank is f(x) > M . The
< equivalents follow for L = −∞.
If we consider s = a, then f is defined on J \{a} and the second and third
blanks are δ > 0 and 0 < |x− a| < δ.
For s = a+ we consider the interval (a, b) and the second and third blanks are
δ > 0 and a < x < a + δ. For s = a−, we consider (c, a) and the second and
third blanks are δ > 0 and a− δ < x < a.
For s = +∞ we consider (c,∞) and the second and third blanks are α < ∞
and α < x, and a symmetric argument follows for s = −∞.

Theorem: Let f be a function defined on J \{a} for some open interval J
containing a. Then limx−→a f(x) exists iff limx−→a+ f(x) and limx−→a− f(x) both
exist and are equal.
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Power Series

Given some sequence (an)∞n=0 of real numbers,

∞∑
n=0

anx
n

is a power series. The power series is a function of f so long it converges for
some (or all) x. It is trivial to observe that this converges for x = 0. Whether
or not it converges for any other x is dependent on our choice of an. Given any
sequence (an), one of the following must be true:

a. The power series converges for all x ∈ R
b. The power series only converges for x = 0
c. The power series converges for all x in some bounded interval
(centered at 0). The interval may be open, half-open, or closed.

All these assertions follow from the following theorem:

Theorem: For the power series
∑
anx

n, let

β = lim sup |an|1/n, R =
1

β
.

Then the power series converges when |x| < R and diverges when |x| > R.
We call the number R the radius of converges for the power series. If R = 0
then the power series cannot converge, and if R = ∞ then the power series
cannot diverge.

One goal for us to understand exactly what the behavior of

f(x) =

∞∑
k=0

akx
k, |x| < R

is. Is f continuous? Is it differentiable? If it is, can we differentiate it as

f ′(x) =

∞∑
k=0

kakx
k−1?

How do we know whether f is continuous? Given its partial sums fn(x) =∑n
k=0 akx

k (which are continuous as they are polynomials), we may be inclined
to state that f is continuous on (a, b) if limn−→∞ fn(x) = f(x). However, this
result is false. To see why, examine f(x) = 0 for x 6= 0 and f(0) = 1, and have
fn(x) = (1−|x|)n. However, power series do converges to continuous functions.
This is because

lim
n−→∞

n∑
k=0

akx
k converges uniformly to

∞∑
k=0

akx
k

on [−R1, R1] where R1 < R.
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Uniform Convergence

Definition: Let (fn) be a sequence of real-valued functions defined on S ⊆ R.
(fn) converges pointwise to f on S if

lim
n−→∞ fn(x) = f(x)∀x ∈ S

Definition: Let (fn) be a sequence of real-valued functions defined on S ⊆ R.
(fn) converges uniformly to f defined on S if

∀ ε > 0 ∃ N : |fn(x)− f(x)| < ε ∀x ∈ S, ∀n > N

Theorem: The uniform limit of continuous functions is continuous. Let (fn)
be a sequence of functions on set S ⊆ R. Suppose lim fn = f uniformly on S,
and suppose S = domf . If each fn is continuous at x0 ∈ S, then f is contin-
uous at x0. This means that the limiting function f must be continuous if fn
converges uniformly to f .

We can restate the definition of uniform convergence as follows: A sequence
of functions (fn) converges uniformly to f if and only if

lim sup{|f(x)− fn(x)| : x ∈ S} = 0

Uniform Convergence, contd.

Definition: A sequence (fn) of functions defined on a set S ⊆ R is uniformly
Cauchy if

∀ε > 0∃N : |fn(x)− fm(x)| < ε∀x ∈ S∀m,n > N

Theorem: Let (fn) be a sequence of functions defined and uniformly Cauchy
on S ⊆ R. Then there exists some f on S such that lim fn = f uniformly on S.

The above theorem is especially useful for “series of functions.” Recall that

∞∑
k=1

ak

only has meaning when

lim

n∑
k=1

ak

has meaning, i.e. is ±∞ or a real number. Likewise, a series of functions defined
as

∞∑
k=1

gk(x)
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only has meaning when the sequence of partial sums converges or diverges point-
wise, i.e.

lim

n∑
k=1

gk(x)

exists. If the sequence of partial sums converges uniformly on S, the series is
uniformly convergent on S.

Theorem: Consider the series
∑∞
k=0 gk of functions on S. Suppose gk is

continuous on S and the series is uniformly convergent on S. Then the series∑∞
k=1 gk is a continuous function on S.

Just as we had the Cauchy Criterion for a series
∑
ak, we have the Cauchy

Criterion defined for a series of functions as well.

∀ ε > 0 ∃ N : n ≥ m > N =⇒ |
n∑
k=1

gk(x)| < ε ∀x ∈ S

Theorem: If a series of functions satisfies the Cauchy criterion uniformly on
S, then the series converges uniformly on S.

Weierstrass M-test: Let (Mk) be a sequence of nonnegative real numbers
where

∑
Mk < ∞. If |gk(x)| ≤ Mk ∀x ∈ S, then

∑
gk converges uniformly on

S.

Differentiation and Integration of Power Series

Theorem: Let
∑∞
n=0 anx

n be a power series with radius of convergence R > 0.
If 0 < R1 < R, then the power series converges uniformly on [−R1, R1] to a
continuous function.

Corrolary: The power seris
∑
anx

n converges to a continuous function on
(−R1, R1).
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Basic Properties of the Derivative

Definition: Let f be a real valued function defined on an open interval con-
taining a point a. Then f is differentiable at a (equivalently, f has a derivative
at a) if the limit

lim
x−→a

f(x)− f(a)

x− a
exists and is finite. We express this limit as f ′(a). domf ′ is the subset of the
domain of f where f is differentiable, meaning that domf ′ ⊆ domf .

Theorem: If f is differentiable at a, then f is continuous at a.

Proof: We are given f ′(a) = limx−→a
f(x)−f(a)

x−a . We can rewrite f(x) = (x −
a) f(x)−f(a)x−a + f(a). Since limx−a = 0, this means lim f(x) = 0 + f(a) meaning
lim f(x) = f(a) and therefore f(x) is continuous at a. �

The following are a series of general statements about the properties of
derivatives, familiar from elementary calculus courses.

Theorem: Let f, g be functions differentiable at a. Each of the functions cf ,
f + g, fg, and f/g is differentiable at a except f/g in the case where g(a) = 0.

i) (cf)′(a) = cf ′(a)
ii) (f + g)′(a) = f ′(a) + g′(a)
iii) (product rule) (fg)′(a) = f(a)g′(a) + f ′(a)g(a)
iv) (quotient rule) (f/g)′(a) = [g(a)f ′(a)− g′(a)f(a)]/g2(a)

Theorem [Chain Rule]: If f is differentiable at a and g is differentiable at
f(a), then the composite g◦f is differentiable at a and (g◦f)(a) = f ′(a)g′(f(a))

Proof: Assume that f is defined on an open interval J containing a and that
g is defined on an open interval I containing f(a). We can then assume that
g ◦ f is defined on J .

Consider a sequence (xn) defined on J \{a} with limxn = a. ∀n, let yn =
f(xn). f is continuous at x = a, so lim yn = f(a). For each f(xn) 6= f(a),

(g ◦ f)(xn)− (g ◦ f)(a)

xn − a
=
g(yn)− g(f(a))

yn − f(a)
· f(xn)− f(a)

xn − a

Case 1: Suppose f(x) 6= f(a) for x near a. Then yn 6= f(a) as n −→ ∞. Then
taking the limit of the above yields (g ◦ f)′(a) = g′(f(a))f ′(a).
Case 2: Suppose f(x) = f(a) for x near a. Then by the Bolzano-Weierstrass
theorem there is a sequence (zn) ∈ J \{a} such that lim zn = a and f(zn) =
f(a). Then f ′(a) = 0 and then we can see that (g ◦ f)′(a) = 0. �
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The Mean Value Theorem

To find the maximum and minimum of a continuous function f on the closed
interval [a, b], it suffices to evaluate the function at {x : f ′(x) = 0}, points where
f is not differentiable, and the endpoints a and b.

Theorem: If f is defined on an open interval containing x0, and if f is differ-
entiable at x0, then f ′(x0) = 0.

Rolle’s Theorem: Let f be a continuous function on [a, b] that is differentiable
on (a, b) and satisfies f(a) = f(b). Then there exists at least one x ∈ (a, b) such
that f ′(x) = 0.

Mean Value Theorem: Let f be a continuous function on [a, b] that is dif-
ferentiable on (a, b). Then there exists at least one x ∈ [a, b] such that

f ′(x) =
f(b)− f(a)

b− a

Corrolary: Let f be a differentiable function on (a, b) such that f ′(x) = 0
for all x ∈ (a, b). Then f is a constant function on (a, b).

Corrolary: Let f and g be differentiable functions on (a, b) such that f ′ = g′ on
(a, b). Then there exists a constant c such that f(x) = g(x)+c for all x ∈ (a, b).
This last corrolary is especially important because it allows us to guarantee that
all the antiderivatives (also known as indefinite integrals) for a function differ
only by a constant. In other words,∫

f ′(x) = f(x) + c

This also implies that all functions of the form f(x)+c have the same derivative,
f ′(x).

Definition: Let f be a real-valued function defined on an interval I. We
say f is:
strictly increasing on I if x1, x2 ∈ I, and x1 < x2 imply f(x1) < f(x2)
strictly decreasing on I if x1, x2 ∈ I, and x1 < x2 imply f(x1) > f(x2)
increasing on I if x1, x2 ∈ I, and x1 < x2 imply f(x1) ≤ f(x2)
decreasing on I if x1, x2 ∈ I, and x1 < x2 imply f(x1) ≥ f(x2)

Corrolary: Let f be a differentiable function on an interval (a, b). Then
f is strictly increasing if f ′(x) > 0 on (a, b)
f is strictly decreasing if f ′(x) < 0 on (a, b)
f is increasing if f ′(x) ≥ 0 on (a, b)
f is decreasing if f ′(x) ≤ 0 on (a, b)
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Intermediate Value Theorem for Derivatives: Let f be a differentiable
function on (a, b). If a < x1 < x2 < b and if c lies between f ′(x1) and f ′(x2),
there exists at least one x ∈ (x1, x2) such that f ′(x) = c.

Theorem: Let f be a one-to-one continuous function on an open interval I,
and let J = f(I). If f is differentiable at x0 ∈ I and if f ′(x0) 6= 0, then f−1 is
differentiable at y0 = f(x0) and

(f−1)′(y0) =
1

f ′(x0)
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L’Hospital’s Rule

We are frequently faced with taking limits of the quotient of functions, i.e. of
the form

lim
x−→s

f(x)

g(x)

If the limits of the individual functions exist, the resultant limit is simply

limx−→s f(x)

limx−→s g(x)

However, we begin to run into problems when we are faced with indeterminate
forms, i.e. when the quotient of the limits is of the form 0

0 or ∞∞ .

The Generalized Mean Value Theorem: Let f and g be continuous func-
tions on [a, b] that are differentiable on (a, b). Then there exists ≥ 1x ∈ (a, b)
such that

f ′(x)[g(b)− g(a)] = g′(x)[f(b)− f(a)]

When g(x) = x, this generalizes to the standard Mean Value Theorem.

L’Hospital’s Rule: Let s signify a, −a +∞, −∞ where a ∈ R, and suppose
f and g are differentiable functions for which the following limit exists:

lim
x−→s

f ′(x)

g′(x)
= L.

If
lim
x−→s

f(x) = lim
x−→s

g(x) = 0

or if
lim
x−→s
|g(x)| = +∞,

then

lim
x−→s

f(x)

g(x)
= L.
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Taylor’s Theorem

Consider a power series with radius of convergence R > 0, where R may be +∞.

f(x) =

∞∑
k=0

akx
k

f is differentiable on the interval |x| < R and

f ′(x) =

∞∑
k=1

kakx
k−1.

However, we can continue differentiating and get that

f ′′(x) =

∞∑
2

k(k − 1)akx
k−2

Inductively applying this tells us that

f (n)(x) =

∞∑
k=n

k(k − 1) . . . (k − n+ 1)anx
k−n

Additionally note that

f (n)(0) = n(n− 1) . . . (n− n+ 1)an = n!an.

We can extrapolate this to the original function to see that

f(x) =

∞∑
k=1

f (k)(0)

k!
xk

Definition: Let f be a function defined on some open interval contaiing c. If
f possesses derivatives of all orders at c, then the series

∞∑
k=0

f (k)(c)

k!
(x− c)k

is called the Taylor series for f about c. For n ≥ 1, the remainder Rn(x) is
defined as

Rn(x) = f(x)−
n−1∑
k=0

f (k)(c)

k!
(x− c)k.

The remainder is useful because our Taylor Series only converges to our function
if limn−→∞Rn(x) = 0.

Taylor’s Theorem: Let f be defined on (a, b) where a < c < b. Here we
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alllow a = −∞ or b = ∞. Suppose the nth derivative f (n) exists on (a, b).
Then for each x 6= c on (a, b) there is some y between c and x such that

Rn(x) =
f (n)(y)

n!
(x− c)n.

Corrolary: Let f be defined on (a, b) where a < c < b. If all the derivaties of
f (n) exist on (a, b) and are bounded by a single constant C, then

lim
n−→∞Rn(x) = 0 for all x ∈ (a, b).

We now look for a form of Taylor’s Theorem which offers the remainder as an
integral.

Taylor’s Theorem, Integral Form: Let f be defined on (a, b) where a <
c < b. Suppose the nth derivative exists and is continuons on (a, b). Then for
x ∈ (a, b)

Rn(x) =

∫ x

c

(x− t)n−1

(n− 1)!
f (n)(t)dt.

Cauchy Remainder: If f is as in the previous theorem then for each x ∈ (a, b)
different from c there is some y between c and x such that

Rn(x) = (x− c) · (x− y)n−1

(n− 1)!
f (n)(y).

This is known as the Cauchy form of the remainder.

Recall that for some nonnegative n, the binomial theorem tells us that

(a+ b)n =

n∑
k=0

(
n

k

)
akbn−k

For a = x and b = 1, we can derive the following.

Binomial Series Theorem: If α ∈ R and |x| < 1, then

(1 + x)α = 1 +

∞∑
k=1

α(α− 1) . . . (α− k + 1)

k!
xk.

Newton’s Method

Newton’s method for approximating f(x) = 0is to begin with some reasonable
guess, x0, and then compute

xn = xn−1 −
f(xn−1)

f ′(xn−1)
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Secant Method

The secant method for approximating f(x) = 0 is similar; we begin with two
reasonable guesses x0 and x1 and compute

xn = xn−1 −
f(xn−1)(xn−2 − xn−1)

f(xn−2)− f(xn−1)

We now need a lemma that assures us that Newton’s method will give a good
approximation for f(x) = 0.

Lemma: Let (an) be a sequence of nonnegative numbers, and let C and δ
be positive numbers satisfying Cδ < 1.If a0 ≤ δ and an ≤ Ca2n−1 for n ≥ 1,
then

an ≤ (Cδ)2
n−1a0 ∀ n ≥ 0.

If max{a0, a1} ≤ δ and an ≤ C max{an−1, an−2}2 for n ≥ 2, then

max{a2n, a2n+1} ≤ (Cδ)2
n−1 max{a0, a1} ∀ n ≥ 0.

Theorem: Consider a function f having a zero x̄ on an interval J = (c, d),
and assume f ′′ exists on J . Assume |f ′′| is bounded above on J and |f ′| is
bounded away from 0 or J . Choose δ0 > 0 so that I = [c+ δ0, d− δ0] ⊂ J is a
nondegenerate interval containing x̄ and so that [c+ δ0, d− δ0] ⊆ J . Let

C =
sup{|f ′′(x)| : x ∈ J }
2 inf{|f ′(x)| : x ∈ J }

,

and select δ > 0 so that 2δ ≤ δ0 and Cδ < 1. Let m = inf{|f ′(x)| : x ∈ J }.
Consider any x0 ∈ I satisfying |f(x)| < mδ. Then the sequence of iterates given
by Newton’s method,

xn = xn−1 −
f(xn−1)

f ′(xn−1)
,

is a well-defined sequence and converges to x̄. Also,

|xn − x̄| ≤ C|xn−1 − x̄|2 and

|xn − x̄| ≤ (Cδ)2
n−1|x0 − x̄|.

We call (xn) quadratically convergent. A similar theorem follows for the secant
method:
Theorem: Assume the notation and hypotheses of the previous theorem. Here,
we let

C =
3 sup{|f ′′(x)| : x ∈ J }
2 inf{|f ′(x)| : x ∈ J }

and consider distince x0, x1 ∈ I with

max{|f(x0)|, |f(x1)|} < mδ.
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Choose δ as in the previous theorem. The sequence of iterates yielded by the
secant method,

xn = xn−1 −
f(xn−1)(xn−2 − xn−1)

f(xn−2)− f(xn−1)
,

is well defined and converges to x̄. Also

|xn − xx̄| ≤ C ·max{|xn−1 − x̄|, |xn−2 − x̄|}2 and

max{|x2n − x̄|, |x2n+1 − x̄|} ≤ (Cδ)2
n−1 max{|x0 − x̄|, |x1 − x̄|}.
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The Riemann Integral

Here we begin to develop the Riemann integral, the common integral in stan-
dard calculus courses.

The Darboux Integral: Let f be a bounded function on [a, b]. For S ⊆ [a, b]
we adopt the notation M(f,S) = sup{f(x) : x ∈ S} and m(f,S) = inf{f(x) :
x ∈ S}. A partition of [a, b] is any finite ordered subset P of the form

P = {a = t0 < t1 < . . . < tn = b}.

The upper Darboux sum U(f,P) of f with respect to P is the sum

U(f,P) =

n∑
k=1

M(f, [tk−1, tk]) · (tk − tk−1)

The lower Darboux sum L(f,P) is

L(f,P) =

n∑
k=1

m(f, [tk−1, tk]) · (tk − tk−1)

Note that

U(f,P) ≤
n∑
k=1

M(f, [a, b]) · (tk − tk−1) = M(f, [a, b]) · (b− a)

Likewise,
L(f,P) ≥ m(f, [a, b]) · (b− a).

Then

m(f,P) · (b− a) ≤ L(f,P) ≤ U(f,P) ≤M(f,P) · (b− a) (1)

The upper Darboux integral is defined as∫ b

a

f = U(f) = inf{U(f,P) : P is a partition of [a, b]}

and the lower Darboux integral is∫ b

a

f = L(f) = sup{L(f,P) : P is a partition of [a, b]}

We say that f is integrable on [a, b] if L(f) = U(f). In this case we can define
the Darboux integral as∫ b

a

f =

∫ b

a

f(x)dx =

∫ b

a

f =

∫ b

a

f
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We will show later that the definition of the Darboux integral is equivalent to
the definition of the Riemann integral and we will use the latter term to refer
to the above formulation.

We can geometrically interpret
∫ b
a
f as the area under a region of the graph

f . Each lower Darboux integral is the area of a union of rectangles underneath
the function, and the upper Darboux integral is the area of a union of rectangles
containing the function. When these two values are the same, we must have the
area underneath the function by the squeeze theorem.

Lemma: Let f be a bounded function on [a, b]. If P and Q are partitions
of [a, b] and P ⊆ Q, then

L(f,P) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f,P)

Lemma: If f is a bounded function on [a, b], and if P and Q are partitions of
[a, b], then L(f,P) ≤ U(f,Q).

Theorem: If f is a bounded function on [a, b], then L(f) ≤ U(f).

Thorem: A bounded function f on [a, b] is integrable if and only if for each
ε > 0 there exists a partition P of [a, b] such that

U(f,P)− L(f,P) ≤ ε.

Definition: The mesh of a partition P is the maximum length of the subinter-
vals comprisin P. Thus if

P = {a = t0 < t1 < . . . < tn = b}

then
mesh(P) = max{tk − tk−1 : k = 1, 2, ..., n}.

Theorem: Cauchy Criterion for Integrability:A bounded function f on
[a, b] is integrable if and only if for each ε > 0 there exists a δ > 0 such that

mesh(P) < δ =⇒ U(f,P)− L(f,P) < ε

for all partitions P of [a, b].

We now offer the Riemann definition of integrability.

Definition: Let f be a bounded function on [a, b], and let P = {a = t0 <
t1 < . . . < tn = b} be a partition of [a, b]. A Riemann sum of f associated with
the partition P is a sum of the form

n∑
k=1

f(xk)(tk − tk−1)
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where xk ∈ [tk−1, tk] for k = 1, 2, ..., n. The choice of xk doesn’t matter, so
there are an infinite number of Riemann sums associated with a single function.

A function is Riemann integrable on the interval [a, b] if

∃r : ∀ε > 0 ∃ δ > 0 : ∀S,mesh(P) < δ =⇒ |S − r| < ε

where S is the set of Riemann sums of f with partition P.

Theorem: A function f is Riemann integrable if and only if it is Darboux
integrable, in which case the values of the integrals coincide.

Corrolary: Let f be a bounded Riemann integrable function on [a, b]. Suppose
(Sn) is a sequence of Riemann sums, with partitions Pn, where limn mesh(Pn) =

0. Then (Sn) converges to
∫ b
a
f .

35



Properties of the Riemann Integral

Recall that a function is monotonic on an interval if it is entirely increasing or
decreasing on that interval.
Theorem: Every monotonic function f on [a, b] is integrable.

Theorem: Every continuous function f on [a, b] is integrable.

Theorem: Let f and g be integrable functions on [a, b], and let c be a real
number. Then

i) cf is integrable and
∫ b
a
cf = c

∫ b
a
f ;

ii) f + g is integrable and
∫ b
a

(f + g) =
∫ b
a
f +

∫ b
a
g.

Theorem: If f and g are integrable on [a, b] and if f(x) ≤ g(x) for x ∈ [a, b],

then
∫ b
a
f ≤

∫ b
a
g.

Theorem: If g is a continuous nonnegative funtion on [a, b] and if
∫ b
a
g = 0,

then g is identically 0 on [a, b].

Theorem: If f is integrable on [a, b], then |f | is integrable on [a, b] and∣∣∣∣∣
∫ b

a

f

∣∣∣∣∣ ≤
∫ b

a

|f |

Theorem: Let f be a function defined on [a, b]. If a < c < b and f is integrable
on [a, c] and [c, b], then f is integrable on [a, b] and∫ b

a

f =

∫ c

a

f +

∫ b

c

f.

Definition: A function f on [a, b] is piecewise monotonic if there is a partition

P = {a = t0 < ... < tn = b}

of [a, b] such that f is monotonic on each interval (tk−1, tk). The function is
piecewise continuous if there is a partition P of [a, b] such that f is uniformly
continuous on each interval (tk−1, tk).

Theorem: If f is piecewise continuous or piecewise monotonic on [a, b], then
f is integrable on [a, b].

Intermediate Value Theorem of Integrals: If f is a continuous function
on [a, b], then for at least one x ∈ (a, b) we have:

f(x) =
1

b− a

∫ b

a

f

Dominated Convergence Theorem: Suppose (fn) is a sequence of inte-
grable functions on [a, b] and fn → f pointwise where f is an integrable function
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on [a, b]. If there exists some M > 0 such that |fn(x)| ≤ M for all n and all
x ∈ [a, b], then

lim
n→∞

∫ b

a

fn(x)dx =

∫ b

a

lim
n→∞

fn(x)dx.

Monotone Convergence Theorem Suppose (fn) is a sequence of integrable
funcrtions on [a, b] such that f1(x) ≤ f2(x) ≤ ... ∀x ∈ [a, b]. Suppose also that
fn → f pointwise where f is integrable on [a, b]. Then

lim
n→∞

∫ b

a

fn(x)dx =

∫ b

a

lim
n→∞

fn(x)dx.
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Fundamental Theorem of Calculus

There are two versions of the FTC. Each says that the operations of integration
and differentiation are basically inverse operations. The first version states that
the integral of the derivative of a function is the function; the second states that
the derivative of the integral of a function is the function.

We say that a function h on (a, b) is integrable on [a, b] if every extension

of h to [a, b] is integrable. Note that the value of
∫ b
a
h does not depend on h̃(a)

or h̃(b).

Fundamental Theorem of Calculus I: If g is a continuous function on [a, b]
that is differentiable on (a, b), and if g′ is integrable on [a, b], then∫ b

a

g′ = g(b)− g(a).

Proof: Let ε > 0. We know that a bounded function f on (a, b) is integrable if
and only if for each ε > 0 there exists a partition P of [a, b] such that

U(f,P)− L(f,P) < ε,

where U and L are the upper and lower Darboux sums, respectively. Since g′

is integrable, we know that

U(g′,P)− L(g′,P) < ε

for a partition P = {a = t0 < ... < tn = b}. We can use the Mean Value
Theorem and find xk ∈ (tk, tk−1) for which

(tk − tk−1)g′(xk) = g(tk)− g(tk−1)

Then we have that

g(b)− g(a) =

n∑
k=1

g(tk)− g(tk−1) =

n∑
k=1

g′(xk)(tk − tk−1).

We then have that

L(g′,P) ≤ g(b)− g(a) ≤ U(g′,P);

this comes from our previous formal definition of the integral. Since

L(g′,P) ≤
∫ b

a

g′ ≤ U(g′,P),

we have the solution that ∣∣∣∣∣
∫ b

a

g′ − [g(b)− g(a)]

∣∣∣∣∣ < ε.
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Theorem: Integration by Parts: If u and v are continuous functions on
[a, b] that are differentiable on (a, b), and if u′ and v′ are integrable on [a, b],
then ∫ b

a

u(x)v′(x)dx+

∫ b

a

u′(x)v(x)dx = u(b)v(b)− u(a)v(a)

�
Fundamental Theorem of Calculus II: Let f be an integrable function on
[a, b]. For x in [a, b], let

F (x) =

∫ x

a

f(t)dt.

Then F is continuous on [a, b]. If f is continuous at x0 ∈ (a, b), then F is
differentiable at x0 and

F ′(x0) = f(x0).

Theorem: Change of Variable: Let u be a differentiable function on an open
interval J such that u′ is continuous, and let I be an open interval such that
u(x) ∈ I for all x ∈ J . If f is continuous on I, then f ◦ u is continuous on J
and ∫ b

a

f ◦ u(x)u′(x)dx =

∫ u(b)

u(a)

f(u)du.
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