
Algorithms

based on Introduction to Algorithms by Cormen et al

Kanyes Thaker

Last updated: May 19, 2024

Note to the Reader

Algorithmic thinking is a critical tool to create systems which are efficient and reliable.
The purpose of these notes is to capture high-level patterns of algorithmic problem
solving that are widely applicable to many problems both in and out of computer
science. These notes are taken from Cormen et. al.’s Algorithms (CLRS), one of the most
popular introductory algorithms textbooks.

These notes are not a comprehensive retelling of the text. Instead, they attempt to draw
out the most relevant and widely applicable algorithmic patterns that I have observed in
my time in the engineering world. Special topics, such as parallel algorithms, machine
learning, combinatorics, and linear programming, are left to other texts which specialize
in those fields. Topics included in these notes include Kolmogorov complexity, sorting,
divide-and-conquer algorithms, common efficient data structures, dynamic program-
ming, greedy algorithms, graph algorithms, and a brief overview of computational
complexity theory.

These notes assume an undergraduate level familiarity with probability, discrete math-
ematics, and data structures.

1

Contents

I Preliminaries 4

Introduction 4

Divide-and-Conquer 6

II Sorting 7
2.1 Heapsort . 8
2.2 Quicksort . 9
2.3 Linear Time Sorting . 10
2.4 Medians . 11

III Data Structures 12

Hash Tables 14

Binary Search Trees 15
4.1 Red-Black Trees . 16

IV Advanced Techniques 18

Dynamic Programming 19

Greedy Algorithms 21
6.1 Huffman Codes . 22

V Advanced Data Structures 22

B-Trees 23

VI Graph Algorithms 23

Elementary Graph Algorithms 24
8.1 Toplogical Sort . 25
8.2 Strongly Connected Components . 26

Minimum Spanning Trees 26

Shortest Paths 27
10.1 Bellman-Ford . 27
10.2 Dĳkstra’s Algorithm . 28
10.3 A* . 29

2

Algorithms List of Algorithms

All-Pairs Shortest Paths 29
11.1 Floyd-Warshall . 30
11.2 Johnson’s Algorithm . 30

Max-Flow/Min-Cut 31
12.1 Ford-Fulkerson . 31

Maximum Bipartite Graph Matching 33

VII NP Completeness 33

List of Algorithms
1 Insertion Sort . 4
2 Merge Sort . 5
3 Maximum Crossing Subarray . 6
4 Maximum Subarray . 7
5 Heapsort . 8
6 Quicksort . 10
7 Counting Sort . 11
8 Radix Sort LSD . 11
9 Randomized Select . 12
10 Inorder-Traversal . 16
11 BST-Search . 16
12 RBTree-Rotate-Right . 17
13 Cut-Rod . 20
14 Huffman . 22
15 BFS . 24
16 DFS . 25
17 Kosaraju’s Algorithm . 26
18 MST-Kruskal . 27
19 Bellman-Ford . 28
20 Dĳkstra . 29
21 Floyd-Warshall . 30
22 Johnson . 31
23 Hopcroft-Karp . 33

3

Algorithms

Part I

Preliminaries

※ Introduction

An algorithm is any well-defined procedure that takes in some input to produce an
output. They are tools that assist in solving particular kinds of computational problem.
Algorithms work hand-in-hand with data structures, which are formats for organizing
information to make solving these problems easier. This text provides a general overview
of common basic algorithms, but the world of algorithms is unbounded – the main
purpose of studying existing algorithms is to learn patterns of thought from which you
can create algorithms of your own. Additionally, it is critical to make algorithms efficient,
so that they may be executed quickly and with minimal expenditure of resources.

As a gentle introduction, take insertion sort. It is an algorithm designed to solve the
sorting problem of organizing a collection of objects where each pair of objects has an
order relationship. The input is a sequence of 𝑛 numbers, and the output is a reordering
of those numbers in increasing order.

Algorithm 1 Insertion Sort
procedure Insertion Sort(𝐴[1..𝑛])

for 𝑗 ← 2..𝐴.𝑙𝑒𝑛𝑔𝑡ℎ do
𝑘𝑒𝑦 ← 𝐴[𝑗]
𝑖 ← 𝑗 − 1
while 𝑖 > 0 and 𝐴[𝑖] > 𝑘𝑒𝑦 do

𝐴[𝑖 + 1] ← 𝐴[𝑖]
𝑖 ← 𝑖 − 1

Insertion sort goes through the collection from left to right. At each step 𝑗, we store the
element 𝑗 temporarily. We then look at the elements we’ve sorted so far (to the left of
𝑗), and make room for 𝑗 by taking all elements greater than 𝑗 and moving them up one
space. Then we insert 𝑗 into the empty slot. At the first time step, we have 1 element,
which is obviously in sorted order. Assuming that at time 𝑗 − 1 the elements on the
left are sorted, the above reasoning shows that the algorithm puts 𝑗 into a sorted order.
Then, at the end of the procedure, the whole array must be in sorted order. This proof
by induction serves as the proof of correctness for this algorithm.

Also essential to the analysis of algorithms is runtime analysis, a measure of how many
"steps" were taken to complete the procedure. Normally we concentrate on the worst-
case running time, i.e. the longest running time for any input, to give us an upper bound
on performance. These values are usually algebraic functions represented in terms of

4

Algorithms Introduction

their asymptotically greatest term, i.e. if a function takes 𝑎𝑛2 + 𝑏𝑛 + 𝑐 operations for
𝑛 inputs, we only report the 𝑛2. Insertion sort does 𝑛 work to iterate through the
whole array, and 𝑛 work to swap all previous elements on each iteration, meaning its
asymptotic runtime is Θ(𝑛2).

Formally, Θ(𝑔(𝑛))means there exist positive 𝑐1, 𝑐2 for which 𝑐1𝑔(𝑛) ≤ 𝑔(𝑛) ≤ 𝑐2𝑔(𝑛) for
all 𝑛. This is an asymptotically tight bound. If we cannot guarantee a lower asymptotic
bound, we would write 𝑂(𝑔(𝑛)). If we cannot guarantee an upper asymptotic bound,
we would write Ω(𝑔(𝑛)).

Insertion sort uses an incremental approach, where we sort a subarray and incrementally
sort the next item, growing that subarray. Alternatively, we might choose a recursive
approach, where we split a problem into smaller subproblems over and over until we
reach a very easy problem, and then combine the results to solve the original prob-
lem. This approach is usually dubbed divide-and-conquer. As an example, take the
following sorting algorithm:

Algorithm 2 Merge Sort
procedure Merge(𝐴, 𝑝, 𝑞, 𝑟)

𝐿, 𝑅← 𝐴[𝑝..𝑞], 𝐴[𝑞..𝑟]
𝑖 , 𝑗 ← 1, 1
for 𝑘 ← 𝑝..𝑟 do

if 𝐿[𝑖] ≤ 𝑅[𝑗] then
𝐴[𝑘], 𝑖 ← 𝐿[𝑖], 𝑖 + 1

else
𝐴[𝑘], 𝑗 ← 𝑅[𝑗], 𝑗 + 1

procedure Merge Sort(𝐴, 𝑝, 𝑟)
if 𝑝 < 𝑟 then

𝑞 ← ⌊(𝑝 + 𝑟)/2⌋
Merge Sort(𝐴, 𝑝, 𝑞)
Merge Sort(𝐴, 𝑞 + 1, 𝑟)
Merge(𝐴, 𝑝, 𝑞, 𝑟)

The merge sort algorithm recursively subdivides the array by repeated calls to itself,
at each time splitting into two left and half subarrays. The splitting is tracked by the
indices 𝑝, 𝑞, 𝑟. Once the arrays reach length 1, no more splitting can be done, so the
length-one arrays are merged. The merge step assumes that the array 𝐴 is composed
of two sub-arrays that are each sorted, and stores them as two separate arrays 𝐿 and 𝑅

temporarily. It then iterates through each element of 𝐿 and 𝑅, and places the smallest
from each back into 𝐴, zipping the two arrays together. A simple proof by induction
proves the correctness of the algorithm. Since an array of length 𝑛 can be divided at
most log 𝑛 times, and there is 𝑛 work done on each iteration of the merge step, this

5

Algorithms Divide-and-Conquer

algorithm is at worst 𝑂(𝑛 log 𝑛).

※ Divide-and-Conquer

Divide-and-conquer algorithms solve complex problems by dividing the problem into
smaller subproblems that resemble the bigger problem, recursively solving the subprob-
lems, and then combining the solutions to solve the largest problem. In general, these
problems can be described by a master equation of form 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛𝑑) – we
split the problem into 𝑎 subproblems of size 𝑛/𝑏 each, and do 𝑂(𝑛𝑑) additional work to
combine the results.

As an example, suppose you are tracking a stock, and have the ability to buy shares
on one day and sell on any later date over 𝑛 days. To maximize profit, you would
want to find the two days where the difference in price is the greatest. A brute force
approach would compare all

(𝑛
2
)

options, which is Ω(𝑛2). Notice that the difference in
price between days 𝑖 and 𝑗 is the sum of the daily changes in price for all of those days.
(i.e. the profit between Monday and Wednesday is the price change from Monday to
Tuesday plus the price change from Tuesday to Wednesday). So an alternate way to
frame this problem is to find the maximum sub-array (by sum) within the array of daily
price changes.

Suppose a divide-and-conquer approach where we split the array neatly in two. Then
the maximum subarray must live entirely in the bottom array, live entirely in the top
array, or straddle the splitting point. We can handle the midpoint case explicitly, and
then recursively handle the other cases.

Algorithm 3 Maximum Crossing Subarray
procedure Max Crossing Subarray(𝐴, 𝑙𝑜𝑤, 𝑚𝑖𝑑, ℎ𝑖𝑔ℎ)

𝑙𝑒 𝑓 𝑡𝑆𝑢𝑚, 𝑠𝑢𝑚 = −∞, 0
for 𝑖 ← 𝑚𝑖𝑑 downto 𝑙𝑜𝑤 do

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝐴[𝑖]
if 𝑠𝑢𝑚 > 𝑙𝑒 𝑓 𝑡𝑆𝑢𝑚 then

𝑙𝑒 𝑓 𝑡𝑆𝑢𝑚, 𝑚𝑎𝑥𝐿𝑒 𝑓 𝑡 = 𝑠𝑢𝑚, 𝑖

𝑟𝑖𝑔ℎ𝑡𝑆𝑢𝑚, 𝑠𝑢𝑚 = −∞, 0
for 𝑗 ← 𝑚𝑖𝑑 to ℎ𝑖𝑔ℎ do

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝐴[𝑗]
if 𝑠𝑢𝑚 > 𝑟𝑖𝑔ℎ𝑡𝑆𝑢𝑚 then

𝑟𝑖𝑔ℎ𝑡𝑆𝑢𝑚, 𝑚𝑎𝑥𝑅𝑖𝑔ℎ𝑡 = 𝑠𝑢𝑚, 𝑗
return (𝑚𝑎𝑥𝐿𝑒 𝑓 𝑡, 𝑚𝑎𝑥𝑅𝑖𝑔ℎ𝑡, 𝑙𝑒 𝑓 𝑡𝑆𝑢𝑚 + 𝑟𝑖𝑔ℎ𝑡𝑆𝑢𝑚)

The crossing algorithm takes 𝑂(𝑛) time, since it involves at worst checking each element
in the array. All other comparison operations are 𝑂(1). And since we split the size

6

Algorithms

Algorithm 4 Maximum Subarray
procedure Maximum Subarray(𝐴, 𝑙𝑜𝑤, ℎ𝑖𝑔ℎ)

if ℎ𝑖𝑔ℎ == 𝑙𝑜𝑤 then return (𝑙𝑜𝑤, ℎ𝑖𝑔ℎ, 𝐴[𝑙𝑜𝑤])
else

𝑚𝑖𝑑 = ⌊(𝑙𝑜𝑤 + ℎ𝑖𝑔ℎ)/2⌋
𝑙𝑒 𝑓 𝑡𝐿𝑜𝑤, 𝑙𝑒 𝑓 𝑡𝐻𝑖𝑔ℎ, 𝑙𝑒 𝑓 𝑡𝑆𝑢𝑚 = Maximum Subarray(𝐴, 𝑙𝑜𝑤, 𝑚𝑖𝑑)
𝑟𝑖𝑔ℎ𝑡𝐿𝑜𝑤, 𝑟𝑖𝑔ℎ𝑡𝐻𝑖𝑔ℎ, 𝑟𝑖𝑔ℎ𝑡𝑀𝑖𝑑 = Maximum Subarray(𝐴, 𝑚𝑖𝑑 + 1, ℎ𝑖𝑔ℎ)
𝑐𝑟𝑜𝑠𝑠𝐿𝑜𝑤, 𝑐𝑟𝑜𝑠𝑠𝐻𝑖𝑔ℎ, 𝑐𝑟𝑜𝑠𝑠𝑀𝑖𝑑 = Max Crossing Subarray(𝐴, 𝑙𝑜𝑤, 𝑚𝑖𝑑, ℎ𝑖𝑔ℎ)

if 𝑙𝑒 𝑓 𝑡𝑆𝑢𝑚 ≥ 𝑟𝑖𝑔ℎ𝑡𝑆𝑢𝑚 & 𝑙𝑒 𝑓 𝑡𝑆𝑢𝑚 ≥ 𝑐𝑟𝑜𝑠𝑠𝑆𝑢𝑚 then
return (𝑙𝑒 𝑓 𝑡𝐿𝑜𝑤, 𝑙𝑒 𝑓 𝑡𝐻𝑖𝑔ℎ, 𝑙𝑒 𝑓 𝑡𝑆𝑢𝑚)

else if 𝑟𝑖𝑔ℎ𝑡𝑆𝑢𝑚 ≥ 𝑙𝑒 𝑓 𝑡𝑆𝑢𝑚 & 𝑟𝑖𝑔ℎ𝑡𝑆𝑢𝑚 ≥ 𝑐𝑟𝑜𝑠𝑠𝑆𝑢𝑚 then
return (𝑟𝑖𝑔ℎ𝑡𝐿𝑜𝑤, 𝑟𝑖𝑔ℎ𝑡𝐻𝑖𝑔ℎ, 𝑟𝑖𝑔ℎ𝑡𝑆𝑢𝑚)

else
return (𝑐𝑟𝑜𝑠𝑠𝐿𝑜𝑤, 𝑐𝑟𝑜𝑠𝑠𝐻𝑖𝑔ℎ, 𝑐𝑟𝑜𝑠𝑠𝑆𝑢𝑚)

𝑛 array into 2 size-𝑛/2 arrays, we set up our recurrence as 𝑇(𝑛) = 2𝑇(𝑛/2) + 𝑂(𝑛).
This is the same recurrence as merge sort, so this algorithm is 𝑂(𝑛 log 𝑛). Divide and
conquer methods can greatly improve on the naive approach. Note that this is not
the most efficient solution – there is a dynamic programming solution that can solve
this problem in 𝑂(𝑛). Practically, divide-and-conquer algorithms are especially useful
for very large or cumbersome problems, such as in large dense matrix multiplication
(Strassen’s algorithm), multiplying large numbers, and computing the fast Fourier
transform (the Cooley-Tukey algorithm).

In general it is possible to find the asymptotic bound from the recurrence relation directly.
If 𝑑 > log𝑏 𝑎, then 𝑇(𝑛) = 𝑂(𝑛𝑑). If 𝑑 = log𝑏 𝑎 then 𝑇(𝑛) = 𝑂(𝑛𝑑 log 𝑛). And if 𝑑 < log𝑏 𝑎

then 𝑇(𝑛) = 𝑂(𝑛log𝑏 𝑎). This simplification is known as the master theorem.

Part II

Sorting

A sorting algorithm is one which solves a sorting problem, i.e. it permutes an input
sequence such that each successive element is greater than or equal to the previous one.
So far we have seen two sorting algorithms – insertion sort, which is 𝑂(𝑛2), but has the
benefit of being very fast for small arrays since the inner loop is tightly constrained; and
merge sort, which is 𝑂(𝑛 log 𝑛), but does not sort in-place.

7

Algorithms 2.1 Heapsort

2.1 Heapsort

Heapsort, like merge sort, is an 𝑂(𝑛 log 𝑛) algorithm. Unlike merge sort, heap sort sorts
in-place, meaning we only need a constant amount of memory to operate. Heapsort
also uses a more sophisticated data structure – the heap – to manage data. A binary
heap is an array object that we can think of as a binary tree stored as an array. For a
given element at position 𝑖, its parent in the heap is element ⌊𝑖/2⌋, its left child is 2𝑖,
and its right child is 2𝑖 + 1. Most computers can make these lookups in one or two
instructions using bit shifts, making this format extremely efficient. Heaps are different
from binary trees in that the values in the nodes must satisfy the heap property, wherein
each element of the heap can be no greater than its parent (for a max-heap) or no less
than its parent (for a min-heap). Basic heap operations take on the order of log 𝑛 time,
since they are proportional to how many "parent" or "child" lookups/writes we need to
execute. So to sort 𝑛 items, we must perform log 𝑛 work for each item, and we expect
an 𝑂(𝑛 log 𝑛) runtime.

Algorithm 5 Heapsort
procedure Max-Heapify(𝐴, 𝑖)

𝑙 , 𝑟 ← Left(𝑖),Right(𝑖)
if 𝑙 ≤ 𝐴.𝑠𝑖𝑧𝑒 & 𝐴[𝑙] > 𝐴[𝑖] then 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 ← 𝑙

else 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 ← 𝑖

if 𝑟 ≤ 𝐴.𝑠𝑖𝑧𝑒 & 𝐴[𝑟] > 𝐴[𝑙𝑎𝑟𝑔𝑒𝑠𝑡] then 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 ← 𝑟

if 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 ≠ 𝑖 then
Swap(𝐴, 𝑖, 𝑙𝑎𝑟𝑔𝑒𝑠𝑡)
Max-Heapify(𝐴, 𝑙𝑎𝑟𝑔𝑒𝑠𝑡)

procedure Build-Heap(𝐴)
𝐴.𝑠𝑖𝑧𝑒 ← 𝐴.𝑙𝑒𝑛𝑔𝑡ℎ

for 𝑖 ← ⌊𝐴.𝑙𝑒𝑛𝑔𝑡ℎ/2⌋ downto 1 do Max-Heapify(𝐴, 𝑖)
procedure Heapsort(𝐴)

Build-Heap(A)
for 𝑖 ← 𝐴.𝑙𝑒𝑛𝑔𝑡ℎ downto 2 do

Swap(𝐴, 1, 𝑖)
𝐴.𝑠𝑖𝑧𝑒 ← 𝐴.𝑠𝑖𝑧𝑒 − 1
Max-Heapify(𝐴, 1)

This algorithm has three main procedures, along with the left and right lookups, and
a simple swap operation that swaps two elements in the array. The first procedure
correctly bubbles element 𝑖 down into the heap by ensuring it is larger than both of its
children, and swapping it with its children recursively if it is not.

The second procedure builds a heap by finding all non-leaf nodes (note that all nodes

8

Algorithms 2.2 Quicksort

after ⌊𝐴.𝑙𝑒𝑛𝑔𝑡ℎ/2⌋ must be leaf nodes, and therefore do not need to be bubbled down,
due to the structure of the heap). This is𝑂(𝑛 log 𝑛), but in reality, we do not perform log 𝑛

work for every single node; the actual tight bound is 𝑂(𝑛), when taking into account
that the heap only has half of its nodes at the maximum depth. A simple inductive
argument shows that the heap building procedure is consistent. At the beginning, all
leaf nodes are in the "second half" of the array, and so are already heapified. At step 𝑖,
assume all elements to the right of 𝑖 satisfy the heap property. But bubbling down 𝑖 into
the rest of the heap, we maintain that at iteration 𝑖 − 1 all elements to the left of 𝑖 − 1 are
heapified. The algorithm terminates when all indices are correctly in the heap.

The final step is heapsort, where we take the top element of the heap and swap it with
the last. Then by decrementing the size of the heap, we never touch the last element
again. The last step is to appropriately bubble down the swapped element. The result is
a fully sorted array, with the largest element last and the smallest first. The total runtime
is 𝑂(𝑛) to build the heap, and 𝑂(log 𝑛) times for each call to the max-heapify procedure,
totaling 𝑂(𝑛 log 𝑛).

The heap itself is a useful data structure to create a priority queue, a system for being able
to retrieve the largest or smallest of a collection of objects. A priority queue usually has an
insertion procedure, which is similar to the max-heapify procedure above, and a "pop"
procedure, where the first element is removed and the heap is shrunk, like in the core
heapsort loop. Priority queues additionally support the Decrease-Key(𝑄, 𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒)
procedure, whereby a key in the queue has its value decreased and correspondingly
bubbled around the heap.

2.2 Quicksort

Quicksort is a remarkably efficient algorithm, though more complex then the algorithms
we have seen so far. Its worst case runtime is𝑂(𝑛2), but in the average case it is𝑂(𝑛 log 𝑛),
and the constant scaling factors absorbed by the 𝑂(𝑛 log 𝑛) are very small (like insertion
sort). It is a divide-and-conquer algorithm, with two main steps; it selects a pivot
element and makes swaps until all the elements to the left of the pivot are less than the
pivot, and all elements to the right are greater. It then recursively calls quicksort on the
left and right halves. Because the swaps in the first half fully segregate the two halves,
no additional work is required to combine them.

The first call is made to Quicksort(𝐴, 1, 𝐴.𝑙𝑒𝑛𝑔𝑡ℎ). The key of this procedure is the
partition algorithm, which, for a subarray ranging from index 𝑝 to 𝑟, starts by selecting
the last element of the subarray as a partition. It then travels from left to right along the
subarray, and maintains a pointer 𝑖 marking the point where the next element is greater
than 𝐴[𝑟]. If it finds an element that is smaller than 𝐴[𝑟], it will swap the element with
the element at 𝑖, and increment 𝑖. When it is done, it places 𝐴[𝑟] at position 𝑖. The result

9

Algorithms 2.3 Linear Time Sorting

Algorithm 6 Quicksort
procedure Partition(𝐴, 𝑝, 𝑟)

𝑥, 𝑖 ← 𝐴[𝑟], 𝑝 − 1
for 𝑗 ← 𝑝 to 𝑟 − 1 do

if 𝐴[𝑗] ≤ 𝑥 then
𝑖 ← 𝑖 + 1

Swap(𝐴, 𝑖, 𝑗)
Swap(𝐴, 𝑖 + 1, 𝑟)
return 𝑖 + 1

procedure Quicksort(𝐴, 𝑝, 𝑟)
if 𝑝 < 𝑟 then

𝑞 ← Partition(𝐴, 𝑝, 𝑟)
Quicksort(𝐴, 𝑝, 𝑞 − 1)
Quicksort(𝐴, 𝑞 + 1, 𝑟)

is that neither the left or right halves are sorted, but the left half is smaller than the
pivot, and the left half is larger. This algorithm also admits a simple inductive proof,
where we show that on each iteration of the partition function, the elements before 𝑖 are
smaller than the pivot and the elements after 𝑖 are greater.

Quicksort suffers its worst case runtime if each partition yields a subproblem with 𝑛 − 1
elements, in which case the runtime reaches 𝑂(𝑛2). But in the average case, assuming
a random starting state, we typically reduce the problem by 𝑛/2 each time, meaning
we approach 𝑂(𝑛 log 𝑛) for similar reasons as with merge sort. As a result, quicksort
implementations usually randomly select the pivot point, and we then expect the input
array to split close to evenly on average. To make the system even more robust to a hacker
that might try to anticipate the pseudorandom number generator used to generate the
pivot, you can try to implement a median-based quicksort, where the first, middle, and
last elements are sorted and their median becomes the pivot point, pushing us closer to
the average case performance.

2.3 Linear Time Sorting

So far we have seen comparison sorts which directly compare elements to order a
sequence. In this way we can think of comparison trees as forming a decision tree of
binary greater-than comparisons. The maximum depth of a binary tree is 𝑂(log 𝑛) (or
𝑂(𝑛) in the worst case, with a spindly tree), and we must examine each element at least
once, so the lower bound for the worst case comparison sort is Ω(𝑛 log 𝑛) – heap sort
and merge sort are asymptotically optimal sorts, while quick sort isn’t because of it’s
𝑂(𝑛2)worst case with bad pivot selection.

10

Algorithms 2.4 Medians

Counting sort assumes that each input element is an integer between 0 and 𝑘, and runs
in 𝑂(𝑛 + 𝑘). Counting sort works by determining the number of elements 𝑚 less than
or equal to element 𝑖, and then puts element 𝑖 at index 𝑚 in the array.

Algorithm 7 Counting Sort
𝐵, 𝐶 ← 𝐴𝑟𝑟𝑎𝑦[1..𝑛], 𝐴𝑟𝑟𝑎𝑦[0..𝑘]
for 𝑖 ← 0 to 𝑘 do 𝐶[𝑖] ← 0
for 𝑗 ← 1 to 𝑛 do 𝐶[𝐴[𝑗]] ← 𝐶[𝐴[𝑗]] + 1

for 𝑖 ← 1 to 𝑘 do 𝐶[𝑖] ← 𝐶[𝑖] + 𝐶[𝑖 − 1]
for 𝑗 ← 𝑛 downto 1 do 𝐵[𝐶[𝐴[𝑗]]], 𝐶[𝐴[𝑗]] ← 𝐴[𝑗], 𝐶[𝐴[𝑗]] − 1
return 𝐵

The first for loop initializes 𝐶 to be an array of zeros. The second for loop passes over
the array and counts the frequency of each element, and stores it in 𝐶. The third for
loop counts the number of elements less than or equal to 𝑖 by maintaining a running
total of the elements in 𝐶. The final for loop inserts each element into its correct position
inside of the output array 𝐵, and handles duplicates by decrementing 𝐶[𝐴[𝑗]] along
the way. We iterate through this array backwards, effectively emptying our count that
we accumulated in the third loop. Counting sort is a type of distribution sort where
we make no comparisons of the actual data, but rather rely on some knowledge of the
distribution of data to make the data assume its sorted form. It is a stable sort, meaning
identical elements in the input array will maintain their position relative to each other
in the sorted array.

Counting sort is a subroutine of a more common distribution sort – radix sort. In radix
sort, we perform a stable sort 𝑑 times, where each time we sort based on the 𝑖th digit
of each element, assuming 𝑑 maximum digits within the array. We begin from the
rightmost or least significant digit (LSD). Because we use a stable sort, we ensure that as
we rearrange the elements according to increasingly significant digits, we preserve the
order from the previous steps. We can also sort from the most significant digit (MSD),
but the stability of that sort is not guaranteed. As a result, radix sort can sort 𝑛 𝑑-digit
numbers in 𝑂(𝑛𝑑) time if the stable sort it uses is 𝑂(𝑑).

Algorithm 8 Radix Sort LSD
procedure Radix Sort LSD(𝐴, 𝑛, 𝑑)

for 𝑖 ← 1 to 𝑑 do
𝑆𝑡𝑎𝑏𝑙𝑒𝑆𝑜𝑟𝑡(𝐴[1...𝑛]) on digit 𝑖

2.4 Medians

An analogous class of problems to sorting is the selection problem, wherein we need
to extract an element from a collection. A typical example is that of an order statistic,

11

Algorithms

i.e. the 𝑖th smallest element of the collection. The median of a set of size 𝑛 is the 𝑛/2th
order statistic of that set. One solution is to sort the collection in 𝑂(𝑛 log 𝑛) time, but we
can determine asymptotically faster methods.

In fact, we can use a divide-and-conquer method similar to quicksort that finds the 𝑖th
smallest element, only in 𝑂(𝑛) time. This is because of instead of recursing over both
sides of the partition, we only recurse over one side.

Algorithm 9 Randomized Select
procedure Randomized-Select(𝐴, 𝑝, 𝑟, 𝑖)

if 𝑝 == 𝑟 then return 𝐴[𝑝]
𝑞 ← Partition(𝐴, 𝑝, 𝑟)
𝑘 ← 𝑞 − 𝑝 + 1
if 𝑖 == 𝑘 then return 𝐴[𝑞] // Return the pivot value
else if 𝑖 < 𝑘 then return Randomized-Select(𝐴, 𝑝, 𝑞 − 1, 𝑖)
elsereturn Randomized-Select(𝐴, 𝑞 + 1, 𝑟 , 𝑖 − 𝑘)

The algorithm is itself straight forward. We randomly pivot around elements 𝑞 selected
on each iteration. If 𝑞 has more than 𝑖 elements smaller than it, we need to recurse on
the left-hand partition, keeping 𝑖 the same. If 𝑞 has fewer than 𝑖 elements smaller than
it (let’s call that number 𝑘), then we need to recurse on the right-hand partition, now
trying to find the 𝑖− 𝑘th smallest element of that partition. In doing so we narrow down
the 𝑖th smallest element, which occurs when 𝑖 == 𝑘 or when there are no elements
left. The worst-case running time for this algorithm is 𝑂(𝑛2) if we consistently partition
around the largest element in the array, but is 𝑂(𝑛) in the average case. This is because
the partition function itself is 𝑂(𝑛). So on the first iteration we are doing 𝑂(𝑛)work, on
the second 𝑂(𝑛/2), on the third 𝑂(𝑛/4), and so on, which is a convergent series that is
still 𝑂(𝑛). We can optimize this procedure by more intelligently selecting the pivot so
that it is always provably optimal.

Part III

Data Structures

Algorithms often involve manipulating objects known as sets, which are collections
of data that can grow, shrink, or be manipulated. Set operations can typically be
separated into queries which access information, and modifiers, which manipulate the
set. Queries consist of things like finding the minimum, the maximum, searching for a
key in a key-value set, etc., while modifiers include insertion and deletion.

12

Algorithms

The array is one of the most elementary data structures, represented as a contiguous
sequence of bytes in memory. Most programming languages the elements of an array
to be the same size; in the event that an array has objects of varying sizes, the array itself
will usually only store a pointer to that object.

A matrix is a two-dimensional array of dimension 𝑚 × 𝑛 where 𝑚 is the number of rows
and 𝑛 is the number of columns. Matrices can be stored in a variety of ways. They can be
stored in row-major order, in which case the rows are stored contiguously, or column-
major order, in which case the columns are stored contiguously. The contiguous blocks
can either be stored one after the other in a single 𝑚 × 𝑛-element array, or they can be
referenced with a pointer (so in row-major order, we would have an array of size 𝑚

where each element is a pointer to an array of size 𝑛, and vice versa). Most modern
matrix implementations use the single-array representation.

A stack is a set where the element deleted is always the one most recently inserted
(last-in, first-out or LIFO). A queue is a set where the element deleted is always the one
which was inserted earliest (first-in, first-out or FIFO). The insertion operation for a stack
is often called push and the deletion operation is called pop. For a queue we typically
say enqueue and dequeue. A stack can be implemented trivially with an array, where
a pointer keeps track of the top of the stack. A queue can be implemented similarly,
except with two pointers that track the insertion point and the deletion point, wrapping
around to the front of the array when necessary.

A linked list is a data structure whose elements are arranged in a linear order. Instead
of determining this order through indices, each element in the list contains a pointer to
the next elements in the list. This idea can be expanded to a doubly-linked list, wherein
each element points not only to the next element but to the previous one as well. The
first element of the list is the head, and the final element is the tail; ℎ𝑒𝑎𝑑.𝑝𝑟𝑒𝑣 points to
a null value, as does 𝑡𝑎𝑖𝑙.𝑛𝑒𝑥𝑡.

Linked lists are extremely powerful data structures, and support all major set operations.
They can be manipulated simply by moving pointers around; for example, to insert an
element at the 𝑘th position, iterate through the list by following 𝑛𝑒𝑥𝑡 pointers until the
𝑘th position; create a new node in the linked list, and then adjust the 𝑘 − 1st pointer and
the new node’s pointer to keep the list contiguous. Operations like deletion follow a
similar idea.

Not all elements can be represented through linear relationships, however. Trees have
a rooted element that might point to multiple different elements. A binary tree is a tree
where each node maintains three pointers – one up to the parent node, and two to a
left and right child node. The heap implementation we mentioned when implementing
heapsort is a type of binary tree.

13

Algorithms Hash Tables

※ Hash Tables

Hash tables are incredibly efficient structures when the only necessary operations are
insertion, lookup, and deletion. Search in a hash table is 𝑂(1) in the average case. Naive
array access is 𝑂(1) since we can compute the memory address from the index directly;
a hash table generalizes that notion – instead of making the key the array index, we
derive the index from the key.

The 𝑂(1) array lookup time is due to a technique called direct addressing which works
when the universe of keys is small. In direct addressing, we initialize a table with
enough slots for 𝑚 addresses, given a universe of size 𝑢. Then any 𝑘 ≤ 𝑢 data can be
written by occupying or updating a slot’s value. The index of the object is then just the
key in the direct address table.

However, this approach fails for very large universes, where storing the table is impossi-
ble. Commonly, the actual space of keys we need to store is much smaller than the total
universe of keys. In a direct address table, key 𝑘 is written to slot 𝑘, but in a hash table,
key 𝑘 is written to slot ℎ(𝑘) for a hash function ℎ. This makes it so that the billionth
key in the "universe" could still be made the 10th element in a small array with a low
chance of collision. A hash table might write multiple values to the same slot, known as
a collision — but typically the hash function is as good as random, and we have ways
of dealing with collisions.

The ideal hash function is one that deterministically outputs a value ℎ(𝑘) between 0 and
𝑚, where 𝑚 ≪ 𝑢, where any two distinct keys have a 1/𝑚 chance of collision. This
is an independent uniform hash function or a random oracle. This is a theoretical
concept, and is not realistically implementable. One way to resolve collisions is by
chaining – instead of each element in the table of size 𝑚 containing a pointer to a single
value, it instead has a pointer to the head of a doubly linked list, which has all the data
corresponding to that hash "bucket." Then a search simply corresponds to finding the
correct bucket and doing a linked-list traversal. The size of these chains is called a load
factor 𝛼. With a good hash function, these traversals are asymptotically insignificant
with respect to the total amount of data – it is 𝑂(1 + 𝛼), which we amortize to 𝑂(1).

Good practical hash functions approximate the independent uniform hashing property.
They should derive the hash value in a way that is independent of patterns in the
data. Hash functions are typically designed to handle keys that are either integers or
short integer vectors, which can then generalizeto more complex object types. Static
hash functions do not have any kind of randomness – examples include the division
hash, ℎ(𝑘) = 𝑘 mod 𝑚 (for some secret prime 𝑚) and multiplication hash ℎ(𝑘) =
⌊𝑚(𝑘𝐴𝑚𝑜𝑑1)⌋. The division hash takes the remainder of the key when divided by a
prime (which is quite restrictive, since it means our hash table must be prime in size) and
the multiplication hash takes the remainder when 𝑘 is multiplied by a value 0 < 𝐴 < 1

14

Algorithms Binary Search Trees

and uses that remainder to bin the key (by multiplying by 𝑚). Neither of these hashes
guarantees good average-case performance.

Adversaries can choose keys such that they are always hashed to the same value, which
would lead to a search time of 𝑂(𝑛). This vulnerability exists with all static hash
functions. Random hash functions do not rely on a single hash function – they instead
select a hash function from a family at random during program initialization. Such a
familyℋ is uniform is, for any key 𝑘, the probability that it is hashed to a slot 𝑞 is 1/𝑚.
The family is 𝜀-universal if 𝑃(ℎ(𝑘1) = ℎ(𝑘2)) ≤ 𝜀. Andℋ is 𝑑-independent if for any set
of distinct keys 𝑘𝑑 and any set of slots 𝑞𝑑, the probability that ℎ(𝑘𝑖) = 𝑞𝑖 is 1/𝑚𝑑.

One simple number-theoretic example of a universal family is the family described by
ℎ𝑎,𝑏(𝑘) = ((𝑎𝑘 + 𝑏) mod 𝑝) mod 𝑚 where 𝑝 is a prime that is larger than any possible
𝑘, and 𝑚 is the size of the hash table. 𝑎 and 𝑏 are integers selected at runtime where
𝑎 ∈ [1, 𝑝) and 𝑏 ∈ [0, 𝑝). The proof is omitted, but it can be shown that for distinct 𝑘1

and 𝑘2, (𝑎𝑘 + 𝑏) mod 𝑝 is distinct as well, meaning ℎ𝑎,𝑏(𝑘1) and ℎ𝑎,𝑏(𝑘2) has collision
probability 1/𝑚. For sequences of values, we can use cryptographic functions. Most chip
manufactureres provide instructions within their architectures for fast cryptographic
function implementation. Such functions provide a fixed-length output for an arbitrarily
sized input.For example we can have a hash function such as ℎ(𝑘) = SHA-256(𝑘) mod 𝑚

(or salt the input by prepending a string 𝑎 to 𝑘 before hashing).

Open address hash tables deal with collisions differently than our previous linked-list
chaining idea. In an open address hash table, the values are stored directly in the table
instead of as pointers. Each key has a "preference list" (or probe sequence) of slots it
would like to be assigned to, independently of other keys. Insertion amounts to going
through the key’s probe sequence until an open slot is found; searching amounts to
going through the key’s probe sequence until the proper slot is discovered.

※ Binary Search Trees

Binary search trees support all the previously mentioned set operations, meaning they
function as both a dictionary and a priority queue. These operations take time propor-
tional to the height of the tree – in the worst case (a spindly, one-sided tree) 𝑂(𝑛) and
in the best case (a bushy tree) 𝑂(log 𝑛).

Entries in a BST always satisfy a key property, which is that all the nodes in the left
child subtree of a parent node must be less than or equal to the parent, and all nodes
in the right child subtree must be greater than or equal to the parent. This has the nice
property of being able to retrieve a sorted set of entries by traversing the left subtree,
retrieving the parent, and then traversing the right subtree (an inorder traversal). In
the case where we emit 𝑥 first before traversing the children is a preorder traversal, and
when we emit 𝑥 last, a postorder traversal.

15

Algorithms 4.1 Red-Black Trees

Algorithm 10 Inorder-Traversal
procedure Inorder-Traversal(𝑥)

if 𝑥 ≠ 𝑛𝑖𝑙 then
Inorder-Traversal(𝑥.𝑙𝑒 𝑓 𝑡)
Emit(𝑥.𝑣𝑎𝑙𝑢𝑒)
Inorder-Traversal(𝑥.𝑟𝑖𝑔ℎ𝑡)

Because BSTs inherently capture the ordering of their constituents, search can be done in
log 𝑛 time through recursively selecting and traversing through left-or-right branches.

Algorithm 11 BST-Search
procedure BST-Search(𝑥, 𝑘)

if 𝑥 == 𝑛𝑖𝑙 or 𝑘 == 𝑥.𝑘𝑒𝑦 then return 𝑥

if 𝑘 < 𝑥.𝑘𝑒𝑦 then return BST-Search(𝑥.𝑙𝑒 𝑓 𝑡 , 𝑘)
else return BST-Search(𝑥.𝑟𝑖𝑔ℎ𝑡, 𝑘)

More precisely, this algorithm runs in 𝑂(ℎ) for a tree of height ℎ, but we typically try
to guarantee that the tree is as bush as possible, i.e. ℎ = 𝑂(log 𝑛). Likewise, finding
the minimum (and maximum) of a BST is easy, simply by traversing through all the
left-children (right-children) of the tree until a leaf node is reached.

Inserting into a BST amounts to a search traversal, except this time the search is guaran-
teed to be 𝑛𝑖𝑙 – so we insert the element at the 𝑛𝑖𝑙 location where we’d expect to find the
value. Deletion is more complex, since it forces a reorganization of all subtrees of the
deleted node. In the event that the deleted node only has one child or no children, the
procedure is trivial – we just delete the node and optionally promote the singular child
subtree. In the event the node has both children, we (1) replace the value of the deleted
node with the value of that node’s successor (the minimum value of the right subtree),
and then (2) assign the now-hanging right-child of the successor (it cannot have a left
child) to the successor’s parent. Take a moment to reason about why this procedure
must work. We call this procedure transplanting.

4.1 Red-Black Trees

Red-black trees (RB) are BSTs that have one extra bit of storage – a color, either red
or black. Red-black are always approximately balanced by maintaining a strict set of
conditions:

1. Every node is either red or black

2. The root node and all 𝑛𝑖𝑙 nodes are black

3. If a node is red, its children must be black

16

Algorithms 4.1 Red-Black Trees

4. All paths from a node to any of its 𝑛𝑖𝑙 nodes must contain the same number of
black nodes. This is the black-height of that node (does not include the first node
itself).

A proof by induction shows that this must be bushy. A tree is bushy if each node 𝑥

has at least 2𝑏ℎ(𝑥) − 1 internal nodes (the total number of nodes of its children). This is
trivially true if node 𝑥 has no children. Now suppose that a child of node 𝑥 has nonzero
height, and is not the root node. If 𝑥 has a red child, that child has the same black-height
as 𝑥, so 𝑏ℎ(𝑥). If it has a black child, then that child has a black-height of 𝑏ℎ(𝑥) − 1.
Since by the inductive hypothesis, the child of 𝑥 has at least 2𝑏ℎ(𝑥)−1 − 1 internal nodes,
then 𝑥 must have at least 2 ∗ 2𝑏ℎ(𝑥)−1 − 1) + 1 = 2𝑏ℎ(𝑥) − 1 internal nodes. A tree with
height ℎ must have a black-height of at least ℎ/2 (since any red node must have black
children), meaning that the number of nodes 𝑛 ≥ 2ℎ/2 − 1. Rearranging, this indicates
that ℎ ≤ 2 log(𝑛 + 1).

Insertion and deletion are nontrivial, since the BST implementation will not preserver
the red-black property. Insertion and deletion require rotation, the idea that if 𝑥 is a
left-child of 𝑦, then the tree can be re-arranged so that 𝑦 is a right-child of 𝑥, by making it
so the right-child of 𝑥 becomes the left-child of 𝑦. This is reminiscent of the BST deletion
algorithm, and is called a right rotation. A left rotation is defined similarly. Since only
three pointers are modified – the pointer from the parent of 𝑦 now points to 𝑥, 𝑥.𝑟𝑖𝑔ℎ𝑡
now points to 𝑦, and 𝑦.𝑙𝑒 𝑓 𝑡 now points to 𝑥.𝑟𝑖𝑔ℎ𝑡 – this rotation happens in 𝑂(1) time.

Algorithm 12 RBTree-Rotate-Right
procedure RBTree-Rotate-Right(T, y)

𝑥 ← 𝑦.𝑙𝑒 𝑓 𝑡

𝑦.𝑙𝑒 𝑓 𝑡 , 𝑥.𝑟𝑖𝑔ℎ𝑡.𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑥.𝑟𝑖𝑔ℎ𝑡, 𝑦

𝑥.𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑦.𝑝𝑎𝑟𝑒𝑛𝑡

𝑦.𝑝𝑎𝑟𝑒𝑛𝑡.[𝑙𝑒 𝑓 𝑡/𝑟𝑖𝑔ℎ𝑡] ← 𝑥 // Whichever child 𝑦 was
𝑥.𝑟𝑖𝑔ℎ𝑡, 𝑦.𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑦, 𝑥

RB-tree insertion starts similarly to normal BST insertion, where the inserted node is
colored red. Then a series of rotations takes place until the RB-property is not violated.
At a high level, properties (1) and (4) cannot be violated by this insertion, so the only
constraints we worry about are (2) and (3).

The procedure for fixing these issues has some symmetry. If the parent 𝑧.𝑝 of the new
node 𝑧 is a left-child, we are symmetric to the case where 𝑧.𝑝 is a right-child. We only
consider one of these cases for brevity.

1. Check if 𝑧.𝑝 is red. If it is not, then set the tree’s root node to black and end.

2. Suppose WLOG that 𝑧.𝑝 is a left-child. Then there are three cases

17

Algorithms 4.1 Red-Black Trees

(a) The sibling to 𝑧.𝑝 is red. In this case, we can turn 𝑧.𝑝 and its sibling both
black and turn the grandparent, 𝑧.𝑝.𝑝, red. This preserves the black-height
of the tree.

(b) 𝑧.𝑝’s sibling is black and 𝑧 is a right-child. Performing a left-rotation on 𝑧.𝑝

then turns this into the next case (c):

(c) 𝑧.𝑝’s sibling is black and 𝑧 is a left-child. In this case, a right-rotation on 𝑧.𝑝.𝑝

would make 𝑧 and 𝑧.𝑝.𝑝 siblings, and swapping the colors of 𝑧.𝑝 and 𝑧.𝑝.𝑝

now means that all colors are organized.

3. Set 𝑧 = 𝑧.𝑝.𝑝 and continue at (1) until termination.

Note that in this process it is impossible for there to be more than 1 "error" in the tree.
Furthermore, the only errors are (a) the root node is the wrong color or (b) there exist
two consecutive red nodes. The process of either flipping the colors of the nodes or (b)
performing two rotations so that we can recolor the nodes correctly never increases or
decreases the black-height of the tree, and therefore can never increase the number of
double-red violations. This is an 𝑂(log 𝑛) operation since insertion is 𝑂(log 𝑛) and the
fixing process is 𝑂(log4 𝑛) (each iteration moves up 2 levels in the tree).

Deletion is more complicated. It likewise begins just like deletion in a BST. We use the
same "transplant" idea as before, except we recolor the successor node to be the same
color as the deleted node. This will violate the red-black property if the successor node
is black. If that node is red, then there can be no problems because the black-height
will not change, and the recoloring prevents two adjacent reds from appearing. The
red-black deletion algorithm performs a series of conditional rotations and recolorings
to correct these errors. For brevity, the details of all the if-statement logic is omitted
here, but the core mechanism is what’s important. Each of the conditions where we can
have an "extra black" can also be permuted into each other, making the core algorithm
simpler.

18

Algorithms

Part IV

Advanced Techniques

※ Dynamic Programming

Dynamic programming is similar to divide-and-conquer, in that it aims to solve a
large problem by dividing it into subproblems. However, while divide-and-conquer
algorithms split up problems into a neat partition, dynamic programming techniques
deal with the case where the subproblems overlap. Dynamic programming algorithms
define the character of an optimal solution, define that solution recursively, and then
compute that value bottom-up.

The rod-cutting problem is as follows: Given a rod of 𝑛 inches and a price table 𝑝𝑖 for all
𝑖 ≤ 𝑛, determine the maximum revenue obtained 𝑟𝑛 by cutting up the rod and selling
the pieces (up to 𝑛−1 cuts). There are 2𝑛−1 ways to do this, but a recurrence immediately
stands out. If we cut a length of rod 𝑘 inches long, then the maximum revenue we can get
is 𝑝𝑘 plus the maximum revenue of cutting a rod of length 𝑛 − 𝑘. So then we can design
an algorithm that, for 𝑖 ≤ 𝑛, calculates max(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑀𝑎𝑥, 𝑝[𝑖] +Cut-Rod(𝑝, 𝑛 − 𝑖). This
is an abysmally inefficient implementation (it is 𝑂(2𝑛), since we are manually trying
each of the 2𝑛 configurations of cuts).

A dynamic programming approach might start simply – instead of recomputing Cut-Rod(𝑝, 𝑛−
𝑘) over and over, save the value the first time and re-use it every time we see it again
(this is called memoization). That way, we only need to save 𝑛 values in memory and
perform lookups, meaning our total runtime goes from 𝑂(2𝑛) to 𝑂(𝑛2)! This approach
is called memoization. This can be done in a top-down way, where we keep the natural
recursion and just save our intermediate results once we hit the bottom, and a bottom-up
method, where we actually start from the bottom and begin building up the table until
we hit the case that we wanted to solve for. So a top-down approach would lay out
the same recursion as before, and start caching when it hits the bottom, i.e. when we
have rods of length 1. A bottom-up approach starts by finding the best return for a rod
of length 1, then uses that to compute the best return for 𝑟2, then 𝑟3, and so on until
we get to rod 𝑟𝑛 . Bottom-up approaches usually have better constant scaling factors as
compared to top-down. The rod cutting algorithm might then look something like this:

A more practical example is the similar matrix-chain multiplication problem, where
the problem is to determine the parenthesization for multiplying 𝑛 matrices together,
where the multiplication is guaranteed to be valid but the dimensions of each matrix are
different, such that the total number of operations is minimized. The ordering in which
the matrices are multiplied can have a dramatic impact on the overall performance of

19

Algorithms Dynamic Programming

Algorithm 13 Cut-Rod
procedure Cut-Rod(𝑝, 𝑛)

𝑟 ← 𝐴𝑟𝑟𝑎𝑦[0..𝑛]
𝑟[0] ← 0
for 𝑗 ← 1 to 𝑛 do

𝑞 ← −∞
for 𝑖 ← 1 to 𝑗 do

𝑞 ← max 𝑞, 𝑝[𝑖] + 𝑟[𝑗 − 𝑖]
𝑟[𝑗] = 𝑞

return 𝑟[𝑛]

the multiplication.

Dynamic programming problems are a good approach when certain properties of the
problem are true. The problem should exhibit an optimal substructure, i.e. if the
optimal solution to the problem contains optimal solutions for subproblems. Take for
example finding the shortest simple path in a graph 𝐺(𝑉, 𝐸) between 𝑢 and 𝑣. If a vertex
𝑤 is part of the shortest path 𝑝 between 𝑢 and 𝑣, then the path from 𝑢 to 𝑤 in 𝑝 must
also be the shortest path between 𝑢 and 𝑤 (likewise for 𝑤 and 𝑣). This is not true for the
longest path problem, since the longest path between 𝑢 and 𝑤 is not independent of the
path from 𝑤 to 𝑣.

DP problems should also be overlapping, i.e. the naive recursive algorithm would have
to solve some subproblems over and over again as part of the recursion. A divide-
and-conquer problem would solve a new problem every time, so DP techniques are not
useful, since information is not shared across the recursion. This lets us reconstruct
the optimal solution from stored (memoized) optimal solutions to subproblems, and
efficiently compute the true solution.

Another common dynamic programming problem is the longest common subsequence
(LCS) problem. In this problem we aim to find the longest common subsequence
(meaning ordered, but not necessarily consecutive) between two collections of ordered
items. While an enumeration of all subsequences is 𝑂(2𝑛), infeasible for long sequences,
this exhibits the optimal substructure property nicely. This is because any LCS of two
strings 𝑋𝑛 and 𝑌𝑚 must contain within it the LCS of every prefix of 𝑋𝑛 and 𝑌𝑚 . Let 𝑍𝑘

be the LCS. If 𝑥𝑛 = 𝑦𝑚 then 𝑧𝑘 = 𝑥𝑛 = 𝑦𝑚 , meaning 𝑍𝑘−1 is the LCS of 𝑋𝑛−1 and 𝑌𝑚−1. If
𝑥𝑛 ≠ 𝑦𝑚 then 𝑍𝑘 is either the LCS of 𝑋𝑛−1 , 𝑌𝑚 or 𝑋𝑛 , 𝑌𝑚−1. This exhausts all possibilities.
The recursion then looks like this:

𝐿𝐶𝑆𝑖 , 𝑗 =


0 𝑖 = 0| 𝑗 = 0

1 + 𝐿𝐶𝑆𝑖−1, 𝑗−1 𝑥𝑖 = 𝑦 𝑗

max 𝐿𝐶𝑆𝑖 , 𝑗−1 , 𝐿𝐶𝑆𝑖−1, 𝑗 otherwise

20

Algorithms Greedy Algorithms

The resulting algorithm will be 𝑂(𝑚𝑛).

※ Greedy Algorithms

Optimization algorithms usually go through a series of steps with a choice at each step.
Greedy algorithms always make a locally optimal choice in the hopes that it will coincide
with the globally optimal solution. Greedy algorithms are usually simple to implement
but highly effective in a wide range of settings.

Suppose the activity selection problem. In this problem we are given a collection of 𝑛
activities 𝑆0,𝑛 characterized by their start times 𝑠𝑖 and end times 𝑓𝑖 . The objective is to
return the maximum number of activities 𝑘 that can be performed such that 𝑠𝑖+1 > 𝑓𝑖 , i.e.
the maximum number of non-overlapping activities. This problem exhibits the optimum
substructure; for a given activity 𝑎𝑖 , the maximum number of activities must include the
maximum number of activities that finished before 𝑎𝑖 and also the maximum number
of activities that start after 𝑎𝑖 , i.e. 𝐴𝑐𝑡𝑖 𝑗 = max𝐴𝑐𝑡𝑖 ,𝑘 + 𝐴𝑐𝑡𝑘,𝑗 + 1 : 𝑎𝑘 ∈ 𝑆𝑖 , 𝑗 However, we
do not need to bookkeep all such activities. In this problem, we can instead pursue
a greedy approach. Take the activity which ends earliest, ending with 𝑓1. There is no
way to exclude this activity from the collection and end up with any more activities,
since no activity could be scheduled before the one that finishes first. So without loss
of generality the activity that finishes earliest is a member of the set, since it also leaves
the most time for subsequent activities. This yields in an 𝑂(𝑛) algorithm where each
activity is only considered once.

In the dynamic programming sense, by selecting the first activity as the one that finishes
first, we eliminate one side of the recursion and only recurse over future events. Greedy
algorithms typically have this DP underpinning – they exhibit some optimal substruc-
ture, with the additional restriction that by making a choice only a single subproblem
remains (instead of multiple). The choice made must be locally optimal, i.e. an optimal
solution would have made the same choice. And the final step is to show that a globally
optimal solution can be assembled from locally optimal choices. Greedy algorithms dif-
fer from dynamic programming algorithms in that while DP problems try to construct
the full set of subproblem solutions before proposing a choice, greedy algorithms make
the first choice with no knowledge of what future problems may yield.

Consider two problems as an example. In the 0-1 knapsack problem, a thief needs to
steal as many items as possible from a collection of size 𝑛 where each item has a value
𝑣𝑖 and a weight 𝑤𝑖 , such that the thief’s knapsack never exceeds total weight 𝑊 . In
the fractional knapsack problem the thief is permitted to take any fraction of an item
instead of needing to take the whole thing. The fractional problem admits a greedy
approach, where the thief can rank the items by "value per unit weight", and start filling
the knapsack from most to least value-per-weight, taking a fraction of the last item to fill

21

Algorithms 6.1 Huffman Codes

up the knapsack. But this solution will not work for the 0-1 problem; suppose 𝑊 = 50
and item 1 has value 60 and weight 10, item 2 with value 100 and weight 20, and item 3
with value 110 and weight 30. The greedy approach would give us 160 while a dynamic
programming approach would give us 220.

6.1 Huffman Codes

Encoding a file of 𝑛 characters with a vocabulary of size 𝑘 will take 𝑂(𝑛 log 𝑘) characters
if each character is given an equal log 𝑘-bit representation. We can do considerably
better with variable-length codewords, wherein more frequent characters get shorter
encodings. In particular we seek an encoding where no character’s code is a prefix for
another character’s code (so that the decoding is unambiguous). As such the encoding
can be represented by a tree where the leaf nodes are characters and the from the root
to leaf, when demarcated by 1s and 0s, is the encoding. The algorithm to build this tree
is as follows, assuming a frequency table 𝐶

Algorithm 14 Huffman
procedure Huffman(C)

𝑛, 𝑄 ← |𝐶 |, 𝐶
for 𝑖 = 1 to 𝑛 − 1 do

𝑧 ← 𝑁𝑜𝑑𝑒.𝑛𝑒𝑤

𝑥, 𝑦 = Extract-Min(𝑄), Extract-Min(𝑄)
𝑧.𝑙𝑒 𝑓 𝑡 , 𝑧.𝑟𝑖𝑔ℎ𝑡, 𝑧. 𝑓 𝑟𝑒𝑞 ← 𝑥, 𝑦, 𝑥. 𝑓 𝑟𝑒𝑞 + 𝑦. 𝑓 𝑟𝑒𝑞

Insert(𝑄, 𝑧)
return Extract-Min(𝑄)

This is a tree-building algorithm, starting from 𝐶 which is a flat list of leaf nodes. At
each iteration, the algorithm removes the two least frequent leaves and gives them a
shared parent 𝑧 which it then inserts the parents of those leaves. Then an assignment
of 0 and 1 for left and right will yield the appropriate prefix-tree codes (they must be
prefix-free because all the characters are in leaf nodes and there is a unique path to
each leaf node). The greedy algorithm works well here because this problem has the
greedy-choice property – the least frequent characters should always receive the highest
number of bits, so they should be placed lowest in the tree.

22

Algorithms

Part V

Advanced Data Structures

Sometimes it is necessary to augment data structures to solve more intricate problems.
A red-black tree can be augmented with more information to solve the 𝑖th order statistic
problem (the 𝑖th smallest element) by having each node store the size of the trees below
it. That information is sufficient to calculate the 𝑖th order statistic in log 𝑛 time. The
tricky part is that this information must be updated alongside the actual node geneology
when a rotation, insertion, or deletion occurs.

Augmenting a data structure usually begins with deciding which data structure to select;
as discussed above, each data structure is specially suited to solve a class of problems.
Then, after deciding which data structure to use and what data to store at each location
of that structure, all that remains is to determine how to augment that data structure’s
operations to maintain the validity of its carried data.

※ B-Trees

B-trees are balanced search trees designed for databases and disk drives. Unlike BSTs
or RB-trees, each node in a B-tree can have thousands of children (its branching factor).
A node in a B-tree consists of a series of 𝑘 keys in sorted order. Its children are nodes
which each handle the 𝑘 + 1 intervals of keys specified by the parent. So if, for 100 items,
a node had range 70 to 90 and its keys are 75, 82, 86 then it will have four children – one
from 70-74, one 76-81, one 83-85, and one 87-90.

Data structures on disk drives are different from data structures used in RAM. Disk
drives are mechanical objects, and accessing data amounts to waiting for the disk drive’s
platter to spin the correct amount so that the read/write head finds the appropriate
data – over 100,000 times slower than accessing data in RAM. To amortize this cost disk
drives usually do not access one item, but rather blocks of bits – usually between 512
and 4096 bytes. B-tree algorithms will typically read entire blocks into main memory
for processing, and the range of values managed by a single node is usually limited
to the size of a block. If a node gets too full, it will "split" into two nodes, where the
median value of that node is inserted into its parent recursively. Deletion will work
in the opposite way, where if a node becomes underful it will get absorbed into the
nodes below it if possible. For a comprehensive understanding of B-trees see Martin
Kleppmann’s work in Designing Data Intensive Applications.

23

Algorithms

Part VI

Graph Algorithms

※ Elementary Graph Algorithms

A graph is a mathematical construction consisting of objects (called nodes or vertices)
that exhibit a pairwise relationship (an edge). A graph is usually denoted as 𝐺(𝐸,𝑉).
Graphs are typically represented as either adjacency lists (a linked list for each vertex
corresponding to the vertices directly connected to that vertex) or an adjacency matrix
(a binary matrix where a 1 denotes an edge existing between vertices 𝑖 and 𝑗). Graphs
can alternatively be weighted, where each edge is assigned some value 𝑤𝑖 . Graphs can
also be directed, meaning an edge can exist from 𝑢 to 𝑣 but may not exist from 𝑣 to 𝑢.

The most common graph problem is one of search, i.e. looking up a vertex in the graph
(to retrieve its associated data). One of the simplest algorithms for finding a vertex in
a graph is through breadth-first search (BFS). BFS tries to find a path from a source
vertex to a target vertex by building a breadth-first tree. The path described by this tree
between the source vertex and any child node in the tree is the path with the smallest
number of edges, which can be seen through a straightforward proof by contradiction.
BFS starts at a target node and adds all that node’s children into a queue. It then pops
then pops a child from the front of the queue, enqueues that child’s unvisited children,
and marks the child as visited. Each child’s depth and its parent is recorded on that
node at the moment it is enqueued.

Algorithm 15 BFS
procedure BFS(𝐺, 𝑠)

𝑄 ← ∅
for 𝑢 ∈ 𝐺.𝑉 − 𝑠 do

𝑢.𝑠𝑡𝑎𝑡𝑢𝑠, 𝑢.𝑑𝑒𝑝𝑡ℎ, 𝑢.𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑛𝑖𝑙,∞, 𝑛𝑖𝑙

Enqueue(𝑄, 𝑠)
𝑠.𝑠𝑡𝑎𝑡𝑢𝑠, 𝑠.𝑑𝑒𝑝𝑡ℎ, 𝑠.𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑞𝑢𝑒𝑢𝑒𝑑,∞, 𝑛𝑖𝑙

while 𝑄 ≠ ∅ do
𝑢 ← Dequeue(𝑄)
for 𝑣 ∈ 𝐺.𝑉[𝑢].𝐸 do

if 𝑣.𝑠𝑡𝑎𝑡𝑢𝑠 == 𝑛𝑖𝑙 then
𝑣.𝑠𝑡𝑎𝑡𝑢𝑠, 𝑣.𝑑𝑒𝑝𝑡ℎ, 𝑣.𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑞𝑢𝑒𝑢𝑒𝑑, 𝑢.𝑑𝑒𝑝𝑡ℎ + 1, 𝑢
Enqueue(𝑄, 𝑣)

𝑢.𝑠𝑡𝑎𝑡𝑢𝑠 = 𝑣𝑖𝑠𝑖𝑡𝑒𝑑

Depth first search is an alternate graph search algorithm where an entire adjacency

24

Algorithms 8.1 Toplogical Sort

list is explored before the parent of that list is marked as visited. The algorithm goes
from child to child until it can go no further, and then traces backwards up the stack
of children. In doing so DFS also forms a tree (or several trees). This is somewhat
arbitrary – BFS can also be run from several sources. However, the manner in which
BFS is most commonly used – finding the shortest path between two vertices – reflects
the single-tree nature.

Algorithm 16 DFS
procedure DFS(𝐺)

for 𝑢 ∈ 𝐺.𝑉 do
𝑢.𝑠𝑡𝑎𝑡𝑢𝑠, 𝑢.𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑛𝑖𝑙, 𝑛𝑖𝑙

for 𝑢 ∈ 𝐺.𝑉 do
if 𝑢.𝑠𝑡𝑎𝑡𝑢𝑠 == 𝑛𝑖𝑙 then Visit(𝐺, 𝑢)

procedure Visit(𝐺, 𝑢)
𝑢.𝑠𝑡𝑎𝑡𝑢𝑠 ← 𝑣𝑖𝑠𝑖𝑡𝑒𝑑

for 𝑣 ∈ 𝐺.𝐴𝑑𝑗[𝑢] do
if 𝑣.𝑠𝑡𝑎𝑡𝑢𝑠 == 𝑛𝑖𝑙 then

𝑣.𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑢

Visit(𝐺, 𝑣)

DFS uniquely captures some of the structure of the graph. If we were to record the
"discovery time" and the "finish time" of each vertex, i.e. the point at which the vertex
is first visited to the time that the algorithm recurses to that vertex’s parent, we would
see a parenthesis structure – each vertex is visited before all of its children, and it is
departed after all of its children. So if 𝑣 and 𝑢 are vertices, and 𝑣.𝑎 and 𝑣.𝑑 are the
arrival and departure times at 𝑣, then the intervals [𝑣.𝑎, 𝑣.𝑑] and [𝑢.𝑎, 𝑢.𝑑] are either
entirely disjoint (in which case 𝑣 and 𝑢 are not in the same lineage in the DFS tree) or one
interval is a strict subset of the other.

8.1 Toplogical Sort

DFS can be used to perform a topological sort of a directed acyclic graph (DAG). A
topological sort is an ordering such that for any edge (𝑢, 𝑣) in the graph, 𝑢 appears
before 𝑣 in the sort. The algorithm is straightforward – perform DFS on the DAG, and
sort the vertices in the reverse order of their departure times. There is one caveat though
– the graph may have no back edges. This means that during Visit(𝐺, 𝑣) we can never
fail the query of 𝑣.𝑠𝑡𝑎𝑡𝑢𝑠 == 𝑛𝑖𝑙. If we do, that means we are considering an edge that
connects to an already-visited node, which implies that the graph has a cycle.

25

Algorithms 8.2 Strongly Connected Components

8.2 Strongly Connected Components

A classic application of DFS is to decompose a directed graph into strongly connected
components. Many graph algorithms rely on such a decomposition, and then proceed to
iterate on the SCCs and combine the results. A subgraph 𝐺𝑆𝐶𝐶 of a graph 𝐺 is a strongly
connected component is there is a path between any two vertices of𝑉𝑆𝐶𝐶 utilizing edges
only in 𝐸𝑆𝐶𝐶 . This definition means that there can be no cycle between two SCCs (as
doing so would make them a single connected component). Hence the contraction of
all the vertices of an SCC into a single meta-node yields a DAG in any directed graph.

Algorithm 17 Kosaraju’s Algorithm
procedure Kosaraju(𝐺)

Get finish times for all vertices from DFS(𝐺)
Call DFS(𝐺) in the reverse order of the finish times from the previous step
Each DFS tree from the previous step is an SCC

The algorithm for finding SCCs relies on the fact that, by definition, the SCCs of 𝐺 are
exactly the SCCs of 𝐺⊤, i.e. 𝐺 with the direction of its edges flipped. The algorithm
calls 𝐷𝐹𝑆(𝐺) to find departure times 𝑢.𝑑 for all 𝑢 ∈ 𝑉 . Then it runs 𝐷𝐹𝑆(𝐺⊤), where
the vertices are considered in the order of decreasing 𝑢.𝑑. The resulting DFS trees are
exactly the SCCs of 𝐺.

The first DFS pass reveals information about graph connectivity. The vertex with the
highest departure time is guaranteed to be in a "source" SCC (i.e. no other SCC will
feed into it). In the reverse graph, this means all vertices reachable from that first vertex
will be nodes either in the same SCC or in a parent SCC. Since the first vertex can have
no parent (due to having the highest departure time), all nodes reachable from the first
node will be in an SCC. A proof by induction using this reasoning proves correctness.

※ Minimum Spanning Trees

A common graph problem is to find the subgraph which connects all vertices 𝑉 with
minimum total edge weight. This subgraph must be a tree, and is called the minimum
spanning tree of the graph. There are two popular algorithms for finding the MST(s)
of a graph, both of which are greedy. Critical to the construction of MSTs is the idea of
a cut, a partition of 𝑉 . A cut respects a set of edges if all those edges bridge vertices on
one side of the cut. A light edge is an edge of minimal weight that crosses the cut. The
core observation here is that, given a partially built MST 𝐴, and a cut of 𝐺 that respects
𝐴, any light edge for that cut will be in the MST. This is trivally true by minimality – if
such a light edge were not part of the cut, a smaller weight edge would be needed to
reach that section of the graph, yet that is impossible – so that light edge must be part
of the cut.

26

Algorithms Shortest Paths

Kruskal’s algorithm grows a minimum spanning tree by finding, out of all edges that
connect any two disconnected subtrees, the edge of minimum weight and adding it to
the tree. This works because for any minimal subtree 𝐶 the edge of least weight between
𝐶 and 𝐺 \ 𝐶 must be part of the MST of 𝐺.

Algorithm 18 MST-Kruskal
procedure MST-Krustkal(𝐺, 𝑤)

𝐴← ∅
for 𝑣 ∈ 𝐺.𝑉 do Make-Set(𝑣)
Sort 𝐺.𝐸 by weight
for (𝑢, 𝑣) ∈ 𝐺.𝐸 do

if Find-Set(𝑢) ≠ Find-Set(𝑣) then
𝐴← 𝐴 ∪ (𝑢, 𝑣)
Union(𝑢, 𝑣)

Prim’s algorithm is similar, and also uses a greedy algorithm. It differs from Kruskal’s
algorithm in that there is always only 1 minimum spanning subtree within the graph.
Instead of considering all edges in the graph, it only considers those at each time step
which are adjacent to the existing subtree. This can be done using a heap, and appending
vertices to the heap at the time they are first "reachable" by the growing tree.

In general, both algorithms perform similarly in 𝑂(𝐸 log𝑉). Prim’s algorithm is sub-
stantially better for dense graphs, since using an efficient heap structure like a Fibonacci
heap gives us 𝑂(𝐸 + 𝑉 log𝑉). Kruskal’s is preferred for sparse graphs since it lets us
use simpler data structures.

※ Shortest Paths

Graph algorithms are often used to solve shortest-paths problems, in which we aim to
find the path of least total cost between two nodes in a weighted directed graph. These
algorithms rely on the property that the shortest path between to vertices contains
within it other shortest paths as well between pairs of intermediate vertices, making this
problem a good candidate for greedy and DP approaches.

10.1 Bellman-Ford

The Bellman-Ford algorithm solves the shortest path problem in cases where the graph
may have negative weights. This can present a problem for many algorithms since falling
into a cycle with a negative edge can yield a path with −∞ weight. The Bellman-Ford
algorithm detects and aborts if a negative weight cycle exists; else it yields the shortest
paths and the associated weights.

To motivate this algorithm we introduce two more procedures. We begin by initializing

27

Algorithms 10.2 Dĳkstra’s Algorithm

each vertex in the graph to have a value 𝑣.𝑑 = ∞which captures the shortest depth from
a source 𝑠 to 𝑣. We also bookkeep vertex parents along this shortest path. Additionally
we introduce the concept of relaxing an edge, where for two vertices 𝑢 and 𝑣 we
check if we can decrease 𝑣.𝑑 by going through 𝑢. Namely, if 𝑣.𝑑 > 𝑢.𝑑 + 𝑤(𝑢, 𝑣) then
𝑣.𝑑 = 𝑢.𝑑 + 𝑤(𝑢, 𝑣).

Algorithm 19 Bellman-Ford
procedure Bellman-Ford(𝐺, 𝑤, 𝑠)

Initialize-Source(𝐺, 𝑠)
for 𝑖 ← 1→ |𝐺.𝑉 | − 1 do

for (𝑢, 𝑣) ∈ 𝐺.𝐸 do Relax(𝑢, 𝑣, 𝑤)
for (𝑢, 𝑣) ∈ 𝐺.𝐸 do

if 𝑣.𝑑 > 𝑢.𝑑 + 𝑤(𝑢, 𝑣) then
return False

return True

The algorithm is simple. The algorithm makes |𝑉 |−1 passes over the graph and attempts
to relax the edges of graph. If after |𝑉 | − 1 passes any vertices can still be relaxed, there
must be a negative weight cycle, so the algorithm terminates. This algoritm takes
𝑂(𝑉2 + 𝑉𝐸) time. If the algorithm returns True, then the value 𝑣.𝑑 is the length of the
shortest path from 𝑠 to 𝑣.

The second statement must be true, since if the algorithm returns True then there is no
relaxation that could produce a shorter path for any vertex in the graph. The intuition
behind the |𝑉 | − 1 iterations is as follows. After one relaxation, we may guarantee that
all shortest paths of length 1 from 𝑠 are fully discovered. After the second relaxation,
all shortest paths of length 2 are correctly calculated. And for a graph of |𝑉 | nodes, the
maximum length of a path free of cycles is |𝑉 | − 1; therefore if after |𝑉 | − 1 iterations a
path can still be shortened, the only reason is that there is a cycle of negative total weight
somewhere in the graph.

10.2 Dĳkstra’s Algorithm

Dĳkstra’s algorithm solves the shortest path problem on weighted directed grpahs
with strictly nonnegative edge weights. Dĳkstra’s generalizes BFS to weighted graphs.
Dĳkstra’s performs vertex selection similar to BFS, except it uses the weighting to deter-
mine how to select items from the queue. Think of the weights as time and the vertex
selection as a wave. Each time a vertex is visited a wave propagates along its children.
When the wave hits a vertex a new wave is immediately sent from that vertex onwards.
The time when a wave hits a vertex depends on the weight of its incident edge.

Dĳkstra’s algorithm is a greedy strategy – it says that at each iteration, choose the closest

28

Algorithms 10.3 A*

Algorithm 20 Dĳkstra
procedure Dijkstra(𝐺, 𝑤, 𝑠)

Initialize-Source(𝐺, 𝑠)
𝑆, 𝑄 ← ∅, 𝐺.𝑉

while 𝑄 ≠ ∅ do
𝑢, 𝑆← Extract-Min(𝑄), 𝑆 ∪ {𝑢}
for 𝑣 ∈ 𝐺.𝐴𝑑𝑗[𝑢] do

Relax(𝑢, 𝑣, 𝑤)
if 𝑣.𝑑 was relaxed then Decrease-Key(𝑄, 𝑣, 𝑣.𝑑)

vertex to 𝑆 and add it to 𝑆. In this way it is very similar to Prim’s MST algorithm from
earlier, with the additional relaxation step. Suppose a four-vertex graph. 𝑠 → 𝑢 has
weight 10, 𝑠 → 𝑣 has weight 3, and 𝑣 → 𝑤 has weight 8. 𝑣 is taken first and given a
distance of 3. Then 𝑤.𝑑 is relaxed to 3 + 8 = 11. Then 𝑢 gets taken with total path cost
10, and finally 𝑤 with 11.

Dĳkstra’s algorithm, like Prim’s, depends on the heap implementation used. With a
Fibonacci heap the runtime goes down to 𝑂(𝑉 log𝑉+𝐸) compared to 𝑂(𝑉2)with a naive
heap implementation, mostly coming from the amortized 𝑂(1)Decrease-Key(𝑄, 𝑣, 𝑣.𝑑)
runtime.

10.3 A*

The A* search algorithm is a refinement of Dĳkstra’s algorithm that is specially designed
to find the shortest path between two points on a graph instead of the entire shortest
paths tree. It does this by considering a heuristic function that determines how close
the algorithm is to the goal. So while the normal Dĳkstra’s algorithm can be thought of
as using the function 𝑔(𝑛) which yields the shortest cost from the source to the current
node 𝑛. A* adds onto that a heuristic ℎ(𝑛) that estimates (optimistically) the remaining
cost to the goal. The heuristic must be admissible, meaning that it can never be greater
than the true cost to the goal. Otherwise the algorithm runs the risk of rejecting the true
shortest path. Then we run Dĳkstra’s as we previously had, with 𝑓 (𝑛) = 𝑔(𝑛) + ℎ(𝑛) as
our priority queue weighting, and get an extremely fast path-finding algorithm.

※ All-Pairs Shortest Paths

Instead of finding the shortest path from a single source, a related problem is finding
the shortest path between every pair of vertices in a graph. This is useful for, say, query
optimization in a large database or traversing through a social graph.

29

Algorithms 11.1 Floyd-Warshall

11.1 Floyd-Warshall

The Floyd-Warshall algorithm is a DP algorithm to solve the all-pairs problem in 𝑂(𝑉3)
time. The algorithm operates on an idea formed by only considering a subset 𝑉𝑘 of 𝑘
of the 𝑛 total vertices 𝑉 . For any two vertices 𝑖 and 𝑗, consider the family of paths that
travel through exclusively 𝑉𝑘 . If the 𝑘th vertex is not on the shortest of such paths, then
the shortest path from 𝑖 → 𝑗 through 𝑉𝑘 is the same as the shortest path from 𝑖 → 𝑗

through 𝑉𝑘−1. If 𝑘 is on the shortest path, then the shortest path from 𝑖 → 𝑗 through 𝑉𝑘

is the shortest path from 𝑖 → 𝑘 through𝑉𝑘 . This structure lends itself well to a recursive
algorithm. Here 𝑊 is the matrix of edge weights where entry 𝑖 , 𝑗 is the weight of the
path from 𝑖 to 𝑗.

Algorithm 21 Floyd-Warshall
procedure Floyd-Warshall(𝑊, 𝑛)

𝐷(0) ←𝑊

for 𝑘 ← 1→ 𝑛 do
𝐷(𝑘) = Matrix-Zeros(𝑛, 𝑛)
for 𝑖 ← 1→ 𝑛 do

for 𝑗 ← 1→ 𝑛 do
𝑑
(𝑘)
𝑖 𝑗
← min{𝑑(𝑘−1)

𝑖 𝑗
, 𝑑
(𝑘−1)
𝑖𝑘
+ 𝑑
(𝑘−1)
𝑘 𝑗
}

return 𝐷(𝑛)

Effectively, this algorithm relies on a similar princple to the relaxation argument in the
previous section. This algorithm can be done in 𝑂(𝑛2) space, as we do not really need to
have different matrices for each iteration of 𝑘 – rather we can update the matrix in-place,
since at each state the weight values are consistently monotonically lower. Note that,
for similar reasons to Dĳkstra’s, the Floyd-Warshall algorithm will fail in graphs with
negative cycles.

11.2 Johnson’s Algorithm

Johnson’s algorithm is an 𝑂(𝑉2 log𝑉 + 𝑉𝐸) algorithm which is asymptotically faster
than 𝑂(𝑉3) for sparse graphs where 𝐸 ≪ 𝑉2. It uses as subroutines both Dĳkstra’s and
Bellman-Ford via a technique called reweighting. If all edge weights are nonnegative,
running Dĳkstra’s from each vertex will find all shortest paths, which is𝑂(𝑉2 log𝑉+𝑉𝐸)
with a fib heap. If 𝐺 has negative-weight edges but no negative-weight cycles, we
reweight the graph so that we can run Dĳkstra’s, where the new weights strictly preserve
shortest paths and are non-negative.

To satisfy these properties, we formulate the reweighting as follows. For any edge
𝑤(𝑢, 𝑣)we reweight it as �̂�(𝑢, 𝑣) = 𝑤(𝑢, 𝑣)+ ℎ(𝑢)− ℎ(𝑣) for some function ℎ. This is easy
to prove – instead of 𝑢, 𝑣 take some arbitrary path 𝑝 from 𝑣0 to 𝑣𝑘 . 𝑝 is a shortest path if

30

Algorithms Max-Flow/Min-Cut

and only if it is the shortest path by both 𝑤(𝑝) and �̂�(𝑝). If you sum all the path segments
of 𝑝 under �̂�, the sum telescopes – meaning the result is �̂�(𝑝) = 𝑤(𝑝) + ℎ(𝑣0) − ℎ(𝑣𝑘). So
if 𝑝 is shortest by 𝑤 it must also be shortest by �̂�, since ℎ is independent of 𝑝.

To get the reweighted graph, extend 𝐺 by one vertex 𝑠 ∉ 𝑉 , with out-edges to each
vertex 𝑣 ∈ 𝑉 with weight 0. Then let ℎ(𝑣) = 𝛿(𝑠, 𝑣) where 𝛿 is the shortest path from 𝑠

to 𝑣. The resulting edges, after updating them with our weight function above, will be
nonnegative by the triangle inequality, since ℎ(𝑣) ≤ ℎ(𝑢) + 𝑤(𝑢, 𝑣).

Algorithm 22 Johnson
procedure Johnson(𝐺, 𝑤)

Compute 𝐺′ according to the above description – add 𝑠 ∉ 𝑉 , draw a zero-weight
out edge from 𝑠 to all 𝑣 ∈ 𝑉

if Bellman-Ford(𝐺′, 𝑤, 𝑠) == False then
return Nil

else
for 𝑣 ∈ 𝐺′.𝑉 do

ℎ(𝑣) ← 𝛿(𝑠, 𝑣) from Bellman-Ford
for (𝑢, 𝑣) ∈ 𝐺′.𝐸 do

�̂�(𝑢, 𝑣) = 𝑤(𝑢, 𝑣) + ℎ(𝑢) − ℎ(𝑣)
for 𝑣 ∈ 𝐺.𝑉 do

Dijkstra(𝐺, �̂�, 𝑢) and record the shortest path 𝑑(𝑢, 𝑣) = �̂�(𝑢, 𝑣)+ ℎ(𝑣)− ℎ(𝑢)

Like Prim’s and Kruskal’s, the Floyd-Warshall algorithm is better for dense graphs while
Johnson’s algorithm is asymptotically faster for sparse graphs, and Johnson’s algorithm
is the only one of the two that can effectively deal with negative edge weights.

※ Max-Flow/Min-Cut

The maximum-flow problem attempts to compute the greatest rate for moving material
from a source node to a sink node in the graph without violating any capacity constraints.
A flow network is a directed graph with non-negative edge weights, where all edges are
strictly one-directional. Flow networks have a determined source and sink vertex. A
flow 𝑓 : 𝑉 ×𝑉 → R satisfies a capacity constraint (meaning 𝑓 (𝑢, 𝑣) ≤ 𝑐(𝑢, 𝑣)) and is also
fully conserved, i.e. the total flow into every vertex equals the total flow out of every
vertex (except the source and sink vertices). The maximum flow problem is to find the
greatest total flow through the system.

12.1 Ford-Fulkerson

The Ford-Fulkerson method is a meta-algorithm that describes a solution to the max-
flow problem. It is not an algorithm per se because it can be implemented in several

31

Algorithms 12.1 Ford-Fulkerson

different ways.

For a flow network 𝐺 the residual network 𝐺 𝑓 is a network of edges whose capacities
represent the changes in flow on the edges of 𝐺. The edge’s residual is 𝑐(𝑢, 𝑣) − 𝑓 (𝑢, 𝑣)
(only edges with nonzero residual capacity are part of the residual network). Unlike
the original 𝐺, 𝐺 𝑓 can also contain edges that go from 𝑣 to 𝑢 (backward), with capacity
𝑐 𝑓 (𝑣, 𝑢) = 𝑓 (𝑢, 𝑣). This represents the fact that we might want to actually decrease the
flow on (𝑢, 𝑣) in order to increase flow somewhere else. An augmentation to a flow 𝑓 is
then 𝑓 (𝑢, 𝑣) + 𝑓 ′(𝑢, 𝑣) − 𝑓 ′(𝑣, 𝑢) for a residual flow 𝑓 ′ in the residual network.

An augmenting path is a simple path from 𝑠 to 𝑡 in 𝐺 𝑓 , which is typically found
with a simple pathfinding algorithm like BFS or DFS. The flow on an edge (𝑢, 𝑣) in
an augmenting path can increase up to 𝑐 𝑓 (𝑢, 𝑣) (or decrease by up to 𝑐 𝑓 (𝑣, 𝑢)) without
violating a capacity constraint. The Ford-Fulkerson method iteratively finds augmenting
paths and augments the flow of𝐺 until no more augmenting paths remain. The resulting
flow is the maximum flow of the network.

This algorithm must terminate since the total capacity is strictly monotonically increas-
ing and the network’s capacity cannot be infinite. But when it does terminate, how do
we know that the result is the maximum flow? A cut of a flow network is a partiition of
𝑉 into 𝑆 and 𝑇 such that 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑇. The net flow across a cut is the sum of flows
spanning the cut and the capacity of a cut is the sum of capacities spanning the cut. A
minimum cut is then a cut whose capacity is minimized.

Max-Flow Min-Cut

If 𝑓 is a flow in a flow network 𝐺(𝑉, 𝐸)with source 𝑠 and sink 𝑡, then the following
are equivalent:

1. 𝑓 is a maximum flow in 𝐺

2. 𝐺 𝑓 contains no augmenting paths
3. | 𝑓 | = 𝑐(𝑆, 𝑇) for a cut (𝑆, 𝑇) of G

The max-flow min-cut theorem tells us that the maximum flow from 𝑠 to 𝑡 is equal to
the total capacity of the minimum cut of the network. This is not a surprising result – all
flow must pass through the minimum cut, so its total capacity should provide an upper
bound on the total flow, and this bound is tight.

When the Ford-Fulkerson method is implemented using BFS to select paths in order
of increasing total capacity, the resulting algorithm is known as the Edmonds-Karp
algorithm.

32

Algorithms Maximum Bipartite Graph Matching

※ Maximum Bipartite Graph Matching

A common real-world problem is finding optimal matchings within a group of objects.
A matching is a subset of edges in a graph such that each vertex has at most one
incident edge. In this way this can be modeled as a bipartite graph, where the graph
is partitioned into subsets 𝐿 and 𝑅 such that all the edges cross between 𝐿 and 𝑅. One
solution to find a matching of maximum cardinality is to model the graph as a flow
network where all flows have unit value, and add a source vertices going into 𝐿 with a
sink vertex coming out of 𝑅. Then running the Ford-Fulkerson method should give us
the maximum flow, which equals the cardinality of the maximal matching.

A more efficient method works by incrementally increasing the size of a matching. For
a matching 𝑀, an 𝑀-alternating path is a path whose edges alternate between being in
𝑀 and 𝐸 − 𝑀. An 𝑀-augmenting path is an 𝑀-alternating path whose first and last
edges are both in 𝐸 − 𝑀. The general idea is as follows: if we find an 𝑀-augmenting
path in a graph, there must be one more edge in 𝐸 −𝑀 than there is in the subset of 𝑀
in the path. Therefore, if we make it so that we "recolor" the edges – so the 𝑀-edges
are removed from 𝑀 and the 𝐸 −𝑀-edges are added – we will get a matching with one
more edge. The following algorithm uses this to find a maximum bipartite matching:

Algorithm 23 Hopcroft-Karp
procedure Hopcroft-Karp(𝐺)

𝑀 ← ∅
do
𝒫 ← {𝑃1 , 𝑃2 , ..., 𝑃𝑘} maximal set of vertex-disjoint shortest 𝑀-augmenting

paths
𝑀 ← 𝑀 ⊕ (𝑃1 ∪ 𝑃2 ∪ ... ∪ 𝑃𝑘)

while 𝒫 == ∅
return 𝑀

The actual work lies in actually computing the maximal set of vertex-disjoint shortest
𝑀-augmenting paths – that is, the largest collection of augmenting paths that share no
vertices. To do this, there are three main steps. The first converts 𝐺 into a directed
graph, which is then topologically sorted into a DAG using BFS. Edges in this DAG
are alternatingly marked as matching and non-matching. Then the depth of each node
with respect to the starting node forms a level graph. Running DFS on the reverse level
graph will yield our desired paths. Hopcroft-Karp gives us our maximum matching in
𝑂(𝐸
√
𝑉).

33

Algorithms

Part VII

NP Completeness

Most of the above algorithms are polynomial time, i.e. their Kolmogorov complexity
is 𝑂(𝑛𝑘). Not all problems can be solved in polynomial time. Problems which can are
typically called tractable. This section focuses on problems whose tractability is not fully
known; no polynomial-time algorithm has yet been discovered, but there is no proof
that no polynomial-time algorithm exists. It questions the difference between problems
which can determinstically be solved in polynomial time (P) and those which can be
verified determinsitcally in polynomial time (NP). A problem in NP is also defined as
being solvable in polynomial time by a nondeterministic Turing machine – that is, one
which may nondeterminsitically branch into many computational paths. This question –
whether 𝑃 = 𝑁𝑃 – is among the most famous research problems in theoretical computer
science.

An NP problem is one whose solution can be verified in polynomial time (so 𝑃 ⊆ 𝑁𝑃).
Furthermore, if 𝑃 = 𝑁𝑃 then it is accepted that if any NP-complete problem is in 𝑃 then
every NP-complete problem is in 𝑃.

To show that a problem is NP-complete, the goal is to show that the problem is at least as
hard as a problem in NP. This is done through a mechanism known as a reduction. In a
reduction, a problem of unknown complexity is manipulated, in polynomial time, into
a different problem of known complexity. Both problems must then belong to the same
class as the inner problem. A problem 𝐻 is NP-hard if, for any 𝑁𝑃 problem 𝐿, there is
a polynomial time reduction from 𝐿 to 𝐻. This means that 𝐻 is at least as hard as any
problem in 𝑁𝑃.

As an example, take the general boolean satisfiability problem or SAT. SAT asks
whether a satisfying assignment of boolean values can be given to a boolean equation
consisting of ∧ (AND), ∨ (OR), ¬ (NOT), =⇒ (IMPLICATION), ⇐⇒ (IF AND ONLY
IF), and grouping parentheses. SAT is NP because, given a satisfying assignment,
plugging the assignment into the equation can be done in polynomial time. It is NP-
hard by the Cook-Levin theorem, which, in brief, explains that any problem in NP can
be modeled as a program given to a non-deterministic Turing machine, and that the
states of such a NDTM may be modeled as a SAT problem. Therefore, accepting this as
true, a problem in NP is NP-complete if SAT reduces to it.

A special class of the SAT problem involves a special form, wherein the boolean equation
is comprised entirely of conjunctions (∧) of clauses where each clause is a disjunction
(∨) of two (2-SAT) or three (3-SAT) variables or negations. This is known as conjunctive
normal form (CNF). Any SAT problem can be converted, in polynomial time, into a

34

Algorithms

3-SAT problem by breaking up long clauses using auxiliary variables. For example, the
clause (𝑥1∨ 𝑥2∨ 𝑥3∨ 𝑥4 ,∨𝑥5) can be rewritten with the two clauses (𝑥1∨ 𝑥2∨ 𝑦1), (¬𝑦1∨
𝑥3∨ 𝑦2), (¬𝑦2 ,∨𝑥4∨ 𝑥5). Therefore 3-SAT is NP-complete (it is in NP for the same reason
as SAT). However, this is not true for 2-SAT. Looking at the previous example, there is
no obvious way break apart long clauses into two-element clauses. In fact, SAT does
not reduce to 2-SAT; it is in P. The details of the 2-SAT algorithm are omitted here, but
they model the formula as a graph and determine satisfiability by finding SCCs in that
graph.

A few more problems are mentioned here, though the exact mechanism of each reduc-
tion is omitted. Instead, a high-level overview is provided.

1. Clique: A clique in a graph is a subset of vertices which are all mutually pair-
connected. The size of a clique is the number of vertices it contains. The decision
framing of the clique problem is determining whether a clique of size 𝑘 exists in a
graph 𝐺. It can be shown that 3-SAT reduces to Clique. This is done by creating a
3-CNF formula (CNF with clauses of 3 variables each) with 𝑘 clauses and building
a graph out of the variables, where an edge exists between any two variables that
are not in the same clause and also do not directly negate each other. If such
a graph contains a clique of size 𝑘 then a satisfying assignment can be found,
meaning that the clique problem is as hard as 3-SAT.

2. Vertex-cover: A vertex cover is a subset of vertices such that every edge in the
graph has at least one vertex in the cover. Vertex-Cover aims to find whether
a graph has a cover of size 𝑘. This problem can be shown to be NP-complete
by finding a reduction from Clique, by showing that the clique problem on the
complement graph of 𝐺 and the cover problem on 𝐺 are in fact equivalent.

3. Hamiltonian cycle: The Hamiltonian cycle problem, i.e. deciding whether a graph
contains a cycle that passes through each vertex exactly once, is NP-complete since
Vertex-Cover can be reduced to it.

4. Traveling Salesman: The traveling salesman problem (TSP) is a general case of the
Hamiltonian cycle problem involving weighted edges on the graph, where instead
of just looking for a Hamiltonian cycle, we aim to find a Hamiltonian cycle with
total cost (sum of edge weights) at most 𝑘. Ham-Cycle reduces to TSP, and TSP is
NP-complete.

5. Subset sum: The subset sum problem involves finding if a subset of positive
integers 𝑆 has sum exactly equal to 𝑡 > 0. It can be shown that 3-SAT reduces to
Subset-Sum, which is itself NP-complete.

Determining whether a reduction exists can be tricky. Typically, reductions usually
involve taking a known NP-hard problem, and showing that a polynomial-time trans-

35

Algorithms

formation of that problem via adding slack variables, dummy nodes to graphs, etc.
will result in the desired problem. This, in conjunction with showing the problem is
in NP (not just NP-hard), is usually sufficient. Even though there do not exist known
polynomial-time true solutions for these problems, in practical settings relaxed ver-
sions (where the result is within some cost ratio 𝜌(𝑛) of the true optimum cost) can be
determined with polynomial-time approximation algorithms.

36

	I Preliminaries
	Introduction
	Divide-and-Conquer

	II Sorting
	Heapsort
	Quicksort
	Linear Time Sorting
	Medians

	III Data Structures
	Hash Tables
	Binary Search Trees
	Red-Black Trees

	IV Advanced Techniques
	Dynamic Programming
	Greedy Algorithms
	Huffman Codes

	V Advanced Data Structures
	B-Trees

	VI Graph Algorithms
	Elementary Graph Algorithms
	Toplogical Sort
	Strongly Connected Components

	Minimum Spanning Trees
	Shortest Paths
	Bellman-Ford
	Dijkstra's Algorithm
	A*

	All-Pairs Shortest Paths
	Floyd-Warshall
	Johnson's Algorithm

	Max-Flow/Min-Cut
	Ford-Fulkerson

	Maximum Bipartite Graph Matching

	VII NP Completeness

