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Introduction

This course is an elementary introduction to differential geometry. Differen-
tial geometry is the study of geometry using differential and integral calculus
along with linear and multilinear algebra. These notes are based on lectures
by Dr. John Lott and Elements of Differential Geometry by Richard Mill-
man and George Parker. This is an introductory class at an undergraduate
level, but it is necessary to have a strong understanding of elementary real
analysis, linear algebra, and multivariable calculus before attempting this
course. Additionally, to reduce complexity, the majority of this course re-
mains in R3 without straying to generalizations, and avoids unnecessarily
complicated machinery such as cohomology and differential forms.
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1 Preliminaries

Differential geometry combines linear algebra and calculus. Here is a brief
summary of the key concepts of these subjects.

1.1 Vector Spaces

A real vector space is a set (typically denoted V ) whose elements are
called vectors along with the binary operations of addition and scalar
multiplication. Vector spaces must satisfy the following 8 vector space
axioms for all vectors u, v, w ∈ V and r, s ∈ R.

1. u + v = v + u (commutativity of addition);

2. u + (v + w) = (u + v) + w (associativity of addition);

3. There is a (unique) 0 such that 0 + u = u (zero property);

4. (rs)u = r(su) (associativity of scalar multiplication);

5. (r + s)u = ru + su (distributivity of scalar multiplication);

6. r(u + v) = ru + rv (distributivity of vector addition);

7. 0u = 0 (zero vector);

8. 1u = u (identity).

Three-dimensional space (R3) and the set of polynomials with real coeffi-
cients (R[x]) are classic examples of real vector spaces.

Basis

A set of vectors {vi : i ∈ I} ⊂ V is linearly independent if every
finite linear combination

∑
aivi is only zero if every ai is zero.

A subset S ⊂ V spans V if, for each v ∈ V , there are vectors
{vi : i ∈ I} and coefficients {ai : i ∈ I} such that

∑
aivi = v.

A basis of a vector space is a linearly independent spanning
set. The number of elements in a basis is the dimension of V .
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Inner Product

The inner product on a vector space V is a function 〈·, ·〉 : V ×V →
R such that

1. 〈u,v〉 = 〈v,u〉;

2. 〈u, rv + sw〉 = r 〈u,v〉+ s 〈u,w〉;

3. 〈u,u〉 ≥ 0 with equality iff u = 0.

In R3 we use the ordinary dot product; in R[x] we typically use 〈p(x), q(x)〉 =∫ 1
−1 p(x)q(x)dx. The length of v is |v| =

√
〈v,v〉.

Cauchy-Schwarz Inequality

If u,v ∈ V , then | 〈u,v〉 | ≤ |u||v|, where equality exists only if u and
v are linearly dependent.

This tells us the angle between two vectors, θ, can be described by 〈u,v〉 =
|u||v| cos θ. We call two vectors u and v orthogonal if 〈u,v〉 = 0; a basis
composed entirely of mutually orthogonal vectors is orthonormal.

1.2 Linear Transformations and Eigenvectors

A linear transformation is a function T : V → W of vector spaces such
that A linear transformation is a function T : V → W of vector spaces
such that T (av + bw) = aT (v) + bT (w). An isomorphism is a bijective
linear transformation.

Suppose T : V → V is a linear transformation and V has two bases {ui}ni=1

and {vα}nα=1, related by ui =
∑
aαivα. Then if (Tij) is the transformation

with respect to the basis ui and (Tαβ) is the transformation with respect
to the basis vα, then Suppose T : V → V is a linear transformation and
V has two bases {ui}ni=1 and {vα}nα=1, related by ui =

∑
aαivα. Then if

(Tij) is the transformation with respect to the basis ui and (Tαβ) is the
transformation with respect to the basis vα, then the transformations are
related by

(Tij) = (aαi)
−1(Tαβ)(aβj).
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Eigenvalues

Let T : V → V be a linear transformation. A real number λ is an
eigenvalue of T if there is a nonzero vector v (the eigenvector)
such that Tv = λv. The eigenvalues of (Tij) are the real solutions
of the polynomial det(Tij − xδij) = 0 (here δ is the Kroneker delta).
The number of eigenvalues is at most the dimension of V .

1.3 Orientation and Cross Products

Let {ui}ni=1 and {vi}ni=1 be two ordered bases (meaning we preserve the
ordering of the sets). Define a matrix (aij) by vj =

∑
aijui. The ordered

bases have the same orientation if det(aij) > 0, and have the opposite
orientation if det(aij) < 0. From this point forward we call the orientation
of the standard basis in R3 ({(1, 0, 0), (0, 1, 0), (0, 0, 1)}) right handed;
we shorthand it as {e1, e2, e3}.

Cross Product

If u =
∑
aiei and v =

∑
biei in R3, then the cross product u× v

is

u× v = e1(a2b3 − a3b2) + e2(a3b1 − a1b3) + e3(a1b2 − a2b1).

The following properties of the cross product hold:

1. u× v = −v × u;

2. (ru)× v = r(u× v);

3. u× v = 0 iff u and v are dependent;

4. (u + v)×w = (u×w) + (v ×w);

5. u× v ⊥ u and u× v ⊥ v;

6. |u× v| = |u||v| sin θ;

7. {u,v,u × v} gives a right-handed orientation if u and v are
linearly independent.

The triple product of u,v,w ∈ R3 is [u,v,w] = 〈(u× v),w〉 and its
absolute value is the volume of the parallelopiped spanned by u,v,w.
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1.4 Lines, Planes, and Spheres

This is a brief review of lines, planes, and spheres, from multivariable cal-
culus. A straight line is defined by a point on the line and a vector parallel
to the line. A plane is a point on the plane and a vector perpendicular to
the plane. A sphere is defined by its center and its radius.

A line through x0 ∈ R3 and parallel to v 6= 0 has equation α(t) = x0 + tv.
The line through points x1 and x2 has equation α(t) = x1 + t(x2 − x1).

The plane through x0 perpendicular to the vector n 6= 0 has equation
〈x− x0,n〉 = 0. Since the cross product of linearly independent vectors is
perpendicular to both vectors, this implies 〈x− x0,u× v〉 = 0 is the plane
through x0 parallel u and v.

The sphere in R3 with center m and radius r > 0 has equation 〈x−m,x−m〉 =
r2.

1.5 Vector Calculus

Let f : R→ V . Let {vi}ni=1 be a basis for V , so f =
∑
fi(t)vi. If each fi is

integrable or differentiable, we may integrate or differentiate f elementwise:

df

dt
=
∑ dfi

dt
vi∫ b

a
f(t)dt =

∑Ç∫ b

a
fi(t)dt

å
vi.

We may additionally take partial derivatives and multiple integrals in an
analogous manner.

Let f and g be vector-valued functions into an inner product space V . Then

f

dt
〈f ,g〉 =

≠
df

dt
,g

∑
+

≠
f ,
dg

dt

∑
.

Similarly, analgous to the product rule:

d

dt
(f × g) =

df

dt
× g + f +

dg

dt
.

A polynomial is of class Ck if if it is k-times differentiable, meaning that
all its mixed partial derivatives of order k or less are continuous. Finally,
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consider the chain rule for vector calculus: if a function x consists of several
variables {ui}ni=1, and each ui is a function of several variables {vi}mi=1, then

∂x

∂vα
=

n∑
i=1

∂x

∂ui

∂ui
∂vα

, α = 1, ...,m.

2 Local Curve Theory

There are two ways to think of curves; we can think of a curve as a geometric
set of points (or locus), or as the path of a particle in R3 (the function of
a parameter). The latter is required to apply methods of calculus to the
curve, but the former also allows us to examine geometric properties of the
curve (tangent field).

2.1 Definitions

We restrict our study to specific curves. If dα/dt is 0 on an interval then
the curve is constant, which is geometrically uninteresting. If dα/dt is 0 at
a single point, then the curve could have a sharp corner, which is also a case
we would like to ignore.

Regular Curves

A regular curve in R3 is a function α : (a, b)→ R3 which is of class
Ck for some k ≥ 1 and for which dα/dt 6= 0 for all t ∈ (a, b). Note
that this describes the function, not the geometry of the curve; two
curves with the same geometry may have different parametrizations.

Using this notion of parametrization, we may define vector fields along α;
this means that for each t, we define a vector v(t) originating at α(t).

Velocity

The velocity vector of a regular curve α(t) at t = t0 is the derivative
dα/dt evaluated at t = t0. The velocity vector field is the vector
valued function dα/dt. The speed of α(t) at t = t0 is the magnitude
of the velocity vector, (dα/dt)(t0).
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Tangent

The tangent vector field to a regular curve α(t) is the vector-valued
function T(t) = (dα/dt)/|dα/dt|; this is the velocity vector field with
all vectors normalized to unit length. This is a geometric property,
i.e. it is independent of the parametrization of α.

The tangent line to a regular curve α at the point t = t0 is
the straight line

l = {w ∈ R3 : w = α(t0) + λT(t0), λ ∈ R}.

Reparametrization

A reparametrization of a curve α : (a, b) → R3 is a one-to-one
function g : (a, b)→ (c, d) such that both g and its inverse h : (c, d)→
(a, b) are of class Ck for k ≥ 1.

In particular, we are curious about the new curve β = α ◦ g. If r is the pa-
rameter in (c, d), then dβ/dr = (dα/dt)(dg/dr). From this we may conclude
that the composition of a regular curve with a reparametrization is also reg-
ular. Any property of a curve that does not change after a reparametrization
is known as being geometrically invariant. We now show that the tan-
gent vector field is geometrically invariant. In particular, for a regular curve
α and its reparametrization β, and t0 = g(r0), the tangent field of α, T(t0),
and the tangent field of β, S(r0), satisfy S = ±T.

Proof:

S =
dβ/dr

|dβ/dr|

=
(dα/dt)(dg/dr)

|dα/dt||dg/dr|

=
dα/dt

|dα/dt|
dg/dr

|dg/dr|
= (T)(±1)

= ±T.

�
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2.2 Arc Length

Here we consider some curves on closed intervals. A regular curve seg-
ment is a function α : [a, b]→ R3 together with an open interval (c, d) with
c < a < b < d and a regular curve γ : (c, d)→ R3 such that α(t) = γ(t) for
all t ∈ [a, b]. The reason we make this definition is so that we can examine
a curve on a closed interval and still be able to find the derivative at the
endpoints of α.

Length of a Regular Curve Segment

The length of a regular curve segment α : [a, b]→ R3 is∫ b

a

∣∣∣∣dαdt
∣∣∣∣ dt.

If α is reparametrized by g, then the length of α is equal to the
length of β = α ◦ g (showing that length is a geometric property).
Additionally, say we have a point t0 ∈ (a, b). Then the length of the
segment from t0 to t, h(t) =

∫ t
t0
|dα/dt|dt, is the signed arc length

from t0 to t and is a reparametrization, called parametrization by
arc length (also called the natural parametrization).

If β(s) (s = h(t)) is parametrized by arc length, then its velocity vector field
is a unit vector field and is thus equal to its tangent vector field. We then
call β a unit speed curve.

If α(t) is a regular curve and s = s(t) is its arc length, then

1. s = s(t) =
∫ t

0 |dα/dt|dt;

2. ds/dt = |dα/dt|;

3. dα/dt = (ds/dt)T; and

4. T = dα/ds.

While arc length parametrization is useful, it is often difficult to compute.
What this discussion does do is tell us that, if we only care about the geom-
etry of the curve (and not its parametrization), we can arbitrarily assume
that the curve is arc length parametrized.
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2.3 Curvature and the Frenet-Serret Apparatus

A curve α : (a, b) → R3 is a unit-speed curve if |dα/dt| = 1. For
a unit speed curve α = α(t), let s = t be the arc length. Note that
α′ = α′(s) = T(s). We can do this because (in the previous section) we
asserted that any regular curve can be reparametrized by arc length.

We now need a way to define how to measure curvature, the central prin-
ciple of differential geometry. Intuitively, curvature should be some measure
of how much a curve bends – a straight line should have no curvature, and
a circle should have the same curvature everywhere.

Curvature

The curvature of a unit speed curve α(s) = κ(s) = |T′(s)|. κ(s) = 0
if α(s) is a straight line and 1/r if α is a circle with radius r.

If we have a point on a curve, and draw every single 3-D vector whose
basepoint is that point, we end up with a 3-dimensional vector space. How
do we best describe this vector space? A typical answer would be to take
the vectors {e1, e2, e3}, the standard basis of R3. However this is a basis
that reflects the geometry of R3, not the geometry of the curve. Our method
will be as follows: take the one vector we already know (the tangent vector
field), find another one (the normal vector field) and use their cross product
(the binormal vector field).

Torsion

The principal normal vector field to a unit speed curve α(s) is the
(unit) vector field N(s) = T′(s)/κ(s). The binormal vector field
to α(s) is B(s) = T(s) ×N(s). The torsion of α is the real valued
function

τ(s) = −
〈
B′(s),N(s)

〉
.

The Frenet-Serret Apparatus

The Frenet-Serret apparatus of the unit speed curve α(s) is

{κ(s), τ(s),T(s),N(s),B(s)}.

If β(t) is a regular curve we may reparametrize with t = t(s) or
s = s(t). Let α(s) = β(t(s)) be a unit-speed reparametrization of β
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and let {κ(s), τ(s),T(s),N(s),B(s)} be the Frenet-Serret apparatus
of α. Then the Frenet-Serret apparatus of β is

{κ(s(t)), τ(s(t)),T(s(t)),N(s(t)),B(s(t))}.

The set {T(s),N(s),B(s)} is sometimes called a moving frame or
moving trihedron.

2.4 The Frenet-Serret Theorem

The Frenet-Serret apparatus gives us a great deal of information. This sec-
tion gives us some tools to understand that information.

We begin with a lemma from linear algebra; if E = {ei} is a collection of n
orthonormal vectors in an n-dimensional inner product space V , then E is
a basis for V . Additionally, for any v ∈ V , we must have v =

∑
〈ei,v〉 ei.

This tells us exactly how to determine a linear combination to construct any
vector in a vector space using only basis vectors.

Frenet-Serret Theorem

The Frenet-Serret theorem states that if α(s) is a unit
speed curve with κ(s) 6= 0 and Frenet-Serret appartus
{κ(s), τ(s),T(s),N(s),B(s)} then:

(a) T′(s) = κ(s)N(s)

(b) N′(s) = −κ(s)T(s) + τ(s)B(s)

(c) B′(s) = −τ(s)N(s)

for each s. It is often easier to remember the following:Ñ
T′

N′

B′

é
=

Ñ
0 κ 0
−κ 0 τ
0 −τ 0

éÑ
T
N
B

é
.

If α(s) is a unit speed curve with nonzero curvature, then if any of the
following are true, then all are true:

(a) α is a plane curve;
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(b) B is a constant vector;

(c) τ(s) = 0 for all s.

The osculating plane to a unit speed curve at the point α(s) is the plane
through α(s) perpendicular to B (and hence spanned by T and N). The
normal plane is the plane through α(s) perpendicular to T. The recti-
fying plane is the plane through α(s) perpendicular to N. Many of our
observations of space curves deal with their projections onto the above three
planes.

Helix

A common curve we will use is the helix, a regular curve such that
for some fixed unit vector u, 〈T,u〉 is constant. u is the axis of the
helix. As a corollary, a unit speed curve α with κ 6= 0 is a helix if and
only if there exists a c such that τ = cκ.

We conclude this section by listing several useful corollaries:

1. α(s) is a straight line if and only if there is a point x0 ∈ R3 such that
every tangent line through α goes through x0;

2. Let α(s) be a unit speed curve with κ 6= 0. Then α(s) lies in a plane
if and only if all osculating planes are parallel;

3. Let α(s) be a unit speed curve whose image lies on a sphere with radius
r and center m. Then κ 6= 0. If τ 6= 0 then

α−m = −ρN− ρ′σB

where ρ = 1/κ and σ = 1/τ . Hence r2 = ρ2 + (ρ′σ)2. ρ is the radius
of curvature and σ is the radius of torsion.

2.5 Picard’s Existence Theorem and The Fundamental The-
orem of Curves

Think back to middle school geometry – we began by describing a triangle
by the lengths of all three of its sides and all three of its angles. We quickly
learened an abbreviated method – we could determine all the properties of
a triangle just by knowing the lengths of two sides and the angle between
them. Similarly, we can entirely describe the geometry of a curve using only
its torsion and curvature.
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Picard’s Existence Theorem

Suppose that the Rn-valued function A(x, t) is defined and continuous
in the closed region |x− c| ≤ K, |t− a| ≤ T , and satisfies a Lipschitz
condition there. Let M = sup |A(x, t)| over this region. Then the
differential equation

dα

dt
= A(x, t)

has a unique solution on |t− a| ≤ min(T,K/M), where α(a) = c.

The Fundamental Theorem of Curves

Any curve with κ > 0 is completely determined, up to position, by its
curvature and torsion. More precisely, let (a, b) be an interval about 0,
κ(s) > 0 a C1 function on (a, b), τ(s) a continuous function on (a, b),
x0 a fixed point of R3, and {D,E,F} a right-handed orthonormal
basis for R3. Then there is a unique C3 regular curve α : (a, b)→ R3

such that:

(a) the parameter is arc length from α(0);

(b) α(0) = x0, T(0) = D, N(0) = E, and B(0) = F;

(c) κ(s) = κ(s) and τ(s) = τ(s).

Unlike our 8th grade geometry triangle, it’s often pretty difficult to find the
initial curve α. In the case of a helix, i.e. κ > 0 and τ = cκ, we can (almost)
find the equation of the curve α(s) characterized by κ and τ . The curve is:

α(s) =
1

ω

Å∫ s

0
sinωt(σ),−

∫ s

0
cosωt(σ), cs

ã
+ α(0),

Where ω =
√

1 + c2, t(σ) =
∫ σ

0 κ(s)ds.

2.6 Non-unit Speed Curves

In practice, it may not be possible to parametrize by arc length; here we
talk about how to compute the Frenet-Serret apparatus for non-unit speed
curves. Let β(t) be regular, and let s(t) be arc length. Then β(t) = α(s(t)),
where α(s) is β(t) reparametrized by arc length. We write β̇ = dβ/dt,
β̈ = d2β/dt2, and

...
β = d3β/dt3.
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The Frenet-Serret apparatus for this curve is then given by the following
set of equations:

(a) T = β̇/|β̇|;

(b) B = β̇ × β̈/|β̇ × β̈|;

(c) N = B×T;

(d) κ = |β̇ × β̈|/|β̇|3; and

(e) τ = 〈β̇ × β̈,
...
β 〉/|β̇ × β̈|2.

The modified Frenet-Serret equations are then:

(a) Ṫ = κ|β̇|N

(b) Ṅ = −κ|β̇|T + τ |β̇|B

(c) Ḃ = −τ |β̇|N.

3 The Global Theory of Plane Curves

The last few sections dealt with the behavior of a curve within a small
neighborhood of a point, looking at values such as curvature and torsion
locally. In this chapter, we take a more macroscopic/global approach and
examine the properties of the entire curve. Much of this will be review from
Calculus III.

3.1 Line Integrals and Green’s Theorem

Line Integral

Suppose α(t) = (x(t), y(t)) is a C1 parametrization of the geometric
curve C in R2 over the interval a ≤ t ≤ b. The line integral for
real-valued functions f, g is then∫

C
fdx+ gdy =

∫ b

a

ï
f(x(t), y(t))

dx

dt
+ g(x(t), y(t))

dy

dt

ò
dt.

The line integral over a closed loop is denoted∮
C
fdx+ gdy.

15



As an example, let C be the unit circle parametrized by α(t) = (cos(t), sin(t))
for 0 ≤ t ≤ 2π. Then∮

C
xdy − ydx =

∫ 2π

0
cos2 θ + sin2 θdθ =

∫ 2π

0
dθ = 2π.

Line integration is assumed to be with respect to arc length; if the function
is not parametrized by arc length, it must be reparametrized. Suppose we
cannot reparametrize – for example, say we want

∫
C κ(s)dt, where s(t) is

not computable. Then we we can instead compute
∫
C κ(s)(ds/dt)dt, where

C is parametrized by t.

Green’s Theorem

If C is a closed plane curve made up of C2 curve segments, which
bounds a region R, traversed counterclockwise, then∮

C
fdx+ gdy =

∫∫
R

Å
∂g

∂x
− ∂f

∂y

ã
dxdy,

for all differentiable f, g defined on R.

3.2 The Rotation Index of Plane Curves

Suppose α : (a, b)→ R3 is a plane curve (so that we may equivalently state
that α : (a, b) → R2). This allows us to define a globally consistent normal
vector field, as opposed to our 3-D version which requires curvature to be
nonzero.

Let α be a unit speed curve in C2. The tangent vector field is t(s) = α′(s).
The normal vector field is the unique unit vector field n(s) such that
{t(s),n(s)} gives a right-handed orthonormal basis of R2. The plane cur-
vature k(s) of α is given by k(s) = 〈t′(s),n(s)〉. Furthermore:

(a) t′(s) = k(s)n(s);

(b) If α(s) = (x(s), y(s)) then

t(s) = (x′(s), y′(s)), n(s) = (−y′(s), x′(s)).

We can additionally relate these definitions to our 3-D Frenet-Serret appa-
ratus; t(s) = T(s) and n(s) = ±N(s) (wherever N(s) is defined), κ(s) =
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|k(s)|, n(s) is differentiable with n(s) = −k(s)t(s). The sign of k indicates
whether the curve is curving away from or towards n.

A regular curve β(t) is closed if β is periodic, meaning that for some
fixed constant a > 0, β(t) = β(t + a) for all t. The smallest such a is the
period of β. If α(s) is an arc-length parametrization of β, it is also closed,
and its period is

L =

∫ a

0

∣∣∣∣dβdt
∣∣∣∣ dt.

β(t) is simple if β is not self-intersecting; more formally, if either β is
injective or if β(t1) = β(t2) if and only if t2 − t1 = na for n ∈ Z.

Rotation Index Theorem

An important property that we can now examine is the rotation
index or winding number of a curve. This value represents how
many full counterclockwise rotations a particle would make in one
period with respect to a point, and is a fundamental object of study
in algebraic topology, complex analysis, geometric topology, and
string theory.

The rotation index of a closed unit speed plane curve is the
integer

iα =
θ(L)

2π
,

where θ(s) is a continuous function describing the angle of the tangent
vector. α(s) is assumed to be oriented in the top half of the plane
such that θ(0) = 0. The rotation index of a simple closed plane curve
is ±1.

If α(s) is a simple closed regular plane curve, the tangent circular image
t : [0, L]→ S1 (where S1 is the unit circle in the plane) is surjective.

3.3 Convex Curves

A line l divides the 2-D plane R2 into two half-planes, denoted H1 and H2,
such that H1 ∪H2 = R2 and H1 ∩H2 = l. A curve lies on one side of a
line l if every point in its image is contained entirely within one half plane.
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Convexity

A regular curve α is convex if it lies on one side of every tangent line
to α.

A function f is monotonically increasing if s ≤ t implies f(s) ≤ f(t); a
function is monotonically decreasing if s ≤ t implies f(s) ≥ f(t). This
in turn implies that a simple closed regular plane curve α(s) is convex if
and only if k(s) has constant sign (this would imply that the normal vector
is pointing away from the “interior” of the curve, or that the angle θ(s) is
monotonic).

The natural implication of this is if we have a convex curve with the prop-
erty that for s1 6= s2 we have θ(s1) = θ(s2), the curve must be a straight
line segment between s1 and s2. In fact, if a line l passes through 3 points
of a convex curve, then the entire line segment connecting those 3 points
must be in the image of α.

3.4 The Isoperimetric Inequality

From elementary geometry we know that, for a fixed perimeter, the circle
is the shape with the greatest enclosed area. Here we establish that this is
true for all simple closed plane curves.

The Isoperimetric Inequality

If α is a simple closed plane curve enclosing a region R, the area of
R is ∮

α
xdy = −

∮
α
ydx

where x and y are the coordinates of the plane. Let the length of α
be L. Let the area bounded by α be A. Then

L2 ≥ 4πA

with equality only if α is a circle. Thus, of all curves with length L,
the circle bounds the greatest area.
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3.5 The Four-Vertex Theorem

This section deals with the special class of convex curves with no straight
segments or isolated points where k = 0. An oval is a regular simple convex
closed plane curve with k > 0. A vertex of a regular plane curve is a point
where k has a relative maximum or minimum.

The Four-Vertex Theorem

An oval α(s) has at least four vertices. In fact, this is true for any
simple closed plane curve.

Let P be a point on the curve α, where α is an oval. Since the tangent
circular image is surjective, there must be a point P̄ where t(P ) = −t(P̄ ).
Therefore the tangent lines at P and P̄ must be parallel. The width is
the perpendicular distance between those two tangent lines. An oval has
constant width if the width is independent of the choice of P . A circle is
an example of an oval of constant width.

Barbier’s Theorem (1860)

If α is an oval of constant width w, its length is πw. Additionally,
the straight line joining P and P̄ must be orthogonal to the tangents
at P and P̄ .

4 Local Surface Theory

The previous section deals with the geometry of curves, which is fairly in-
tuitive; it’s easy to picture what the “geometry” of a curve means, and the
topic lends itself nicely to our discussion of torsion and curvature. Here we
turn our attention to the study of surfaces, a much deeper and complex
subject.

4.1 Basic Definitions and Examples

In 2-D geometry, we have a very natural way to “regularize” our curves,
since every curve has an arc-length parametrization. Surfaces cannot be
regularized in this way. For example, consider the unit sphere S2 ⊂ R3.
No matter what parametrization we choose, there will be (at least) one
point which is ambiguous; the poles of a globe cannot be defined by a single
latitude-longitude pair.

19



A subset U ⊂ R2 is open if, for every (a, b) ∈ U , there is a ε > 0 such
that (x, y) ∈ U whenever

(x− a)2 + (y − b)2 < ε2.

Essentially, U is open if there is an adequately small disc about each point
in U which is also contained entirely in U .

A Ck coordinate patch (a simple surface) is an injective Ck function
x : U → R3 for some k ≥ 1 where U is an open subset of R2 with coordi-
nates u1, u2 and (∂x/∂u1)× (∂x/∂u2) 6= 0 on U . A simple surface is a 3-D
function which is injective with respect to its 2-D “shadow”. Our condition,
that the cross product of partial derivatives with respect to the coordinates
of the “shadow,” is equivalent to our condition earlier of regularity; in fact,
we call this the regularity condition for surfaces. This condition, that
(∂x/∂u1)× (∂x/∂u2) 6= 0, is equivalent to requiring that {∂x/∂u1, ∂x/∂u2}
is a linearly independent set.

Take, as an example, f(u1, u2), a Ck differentiable function in an open set
U . Let x = (u1, u2, f(u1, u2)). x is a Ck simple surface which is the graph
of a function, and is called a Monge patch.

A Ck coordinate transform (also called a diffeomorphism) is a Ck

injective function f : V → U of open sets in R2 whose inverse g : U → V
is also of class Ck. If x : U → R3 is a simple surface and f : V → U is a
coordinate transform, then y = x ◦ f : V → R3 is a simple surface with the
same image as x. For brevity of notation, we use the following shorthand
for x : U → R3 a simple surface:

x1 =
∂x

∂u1
, x2 =

∂x

∂u2

The tangent plane to a simple surface at the point P = x(a, b) is the
plane through P perpendicular to x1(a, b)× x2(a, b). The unit normal to
the surface at P is n(a, b) = x1 × x2/|x1 × x2|, where the RHS is evaluated
at (a, b). The normal plane always exists due to our regularity condition,
and is perpendicular to the tangent plane. The tangent and normal planes
are preserved through coordinate transform, except the normal plane may
have the opposite sign. The coordinate transform in this way is analogous
to the concept of reparametrization. A tangent vector to a surface x at
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P is the velocity vector of some curve in x passing through P ; the set of all
such velocity vectors forms a vector space.

4.2 Surfaces

Our discussion so far is unable to characterize the entire sphere S2. To do
this we introduce a more general notion of a surface – a collection of over-
lapping simple surfaces.

Let M be a subset of R3 and let ε > 0. The ε-neighborhood of P ∈ M
is the set of all points Q ∈ M such that d(P,Q) < ε where d is standard
Euclidean distance. If M ⊂ R3, the function g : M → R2 is continu-
ous at P ∈ M if for every open set U in R2 with g(P ) ∈ U there is an
ε−neighborhood N of P with g(N ) ⊂ U . A coordinate patch is proper if
the inverse function x−1 : x(U)→ U is continuous at each point of x(U).

Surface

A Ck surface in R3 is a subset M ⊂ R3 such that for every point
P ∈M there is a proper Ck coordinate patch whose image is in M and
which contains an ε−neighborhood of P for some ε > 0. Furthermore,
if both x : U → R3 and y : V → R3 are such coordinate patches with
U ′ = x(U), V ′ = x(V), then y−1 ◦ x : (x−1(U ′ ∩ V ′))→ (y−1(U ′ ∩ V ′))
is a Ck coordinate transformation. A sphere is a surface as it can
be completely covered by 6 coordinate patches – the left and right
hemispheres, the top and bottom hemispheres, and the front and
back hemispheres.

The implicit function theorem states that if f : R3 → R is a differentiable
function such that (fx, fy, fz) 6= 0 at all points M = {(x, y, z) : f(x, y, z) =
0} then M is a surface, and if fz 6= 0 at P ∈M then there is a Monge patch
in M that contains P .

4.3 The First Fundamental Form and Arc Length

There is a problem when we examine coordinate patches independently. Any
definition in one coordinate patch must be manually checked with its form
in another coordinate patch to check if that definition is geometric. Let M
be a surface in R3 and P ∈M . If X and Y are vectors tangent to M at P ,
we would like to compute the inner product

〈X,Y〉 =
∑

XiYjgij ,
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where
gij(u

1, u2) = 〈xi(u1, u2),xj(u
1, u2)〉.

g defines a symmetric matrix, a function defined on U , known as the metric
coefficients, the metric tensor coefficients, or the Riemannian met-
ric coefficients.

The tangent space of a surface M at P ∈M is the set TPM of all vectors
tangent to M at P . This is the same as the tangent plane at P to any of the
coordinate patches containing P . If we then restrict our inner product 〈, 〉
to this space, (gij) is a representation of the restricted inner product with
respect to the basis {x1,x2}, and (gij) is a nonsingular positive definite ma-
trix. The rule assigning an inner product to tangent vectors X,Y ∈ TPM
is known as the first fundamental form. denoted

I(X,Y).

We use the “upper index” notation gkl to represent the k, l entry of the
inverse matrix of (gij). For a coordinate patch x : U → R3:

(a) det(g) = |x1 × x2|2;

(b) g1,1 = g2,2/ det(g), g1,2 = g2,1 = −g1,2/ det(g), g2,2 = g1,1/ det(g);

(c) for all i, j:
∑2

k=1 gi,kg
k,j = δi,j .

Duality

A linear functional on a real vector space V is a linear function

ρ : V → R.

The set of all linear functionals defined on V forms a vector space
under the usual concepts of addition and scalar multiplication, i.e.

(rϕ+ ψ)(v) = r(ϕ(v)) + ψ(v).

This vector space is the dual space of V , denoted V ∗, and has the
same dimension as V .
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4.4 Normal and Geodesic Curvature and Gauss’s Formulas

Let γ(s) be a unit-speed curve whose images lies on the surface M ⊂ R3. γ
has Frenet-Serret apparatus {κ, τ,T,N,B}.

Then if x : U → R3 is a simple surface and γ(s) is a unit-speed curve
in the image of x, then

(a) xi,j = ∂2x
∂uj∂ui

(a, b);

(b) xi,j = ∂2x
∂uj∂ui

;

(c) S = n×T.

S is the intrinsic normal of γ, and is well defined on M up to sign (just
like n). Be careful here; S is normal to the curve itself but is tangent to
the surface. If P ∈ M then the set NpM = {rn|r ∈ R} is the set of all
vectors perpendicular to M at P and is called the normal space of M at
P . TPM + NPM = R3, which means any vector can be decomposed into
the sum of a tangent and a normal vector.

Now let γ′′ = X(s) + V(s) where X is tangent to M and V is normal
to M . Then T is normal to V so 〈T,V〉 = 0; since 〈γ′′,T〉 = 0 as well,
〈X,T〉 must also be 0. Then X is a multiple of S.

Normal and Geodesic Curvature

Define two functions:

κn(s) = 〈γ′′(s),n(γ1(s), γ2(s))〉

κg(s) = 〈γ′′(s),S(s)〉

so that

κ(s)N(s) = T′(s) = γ′′(s) = κn(s)n(s) + κg(s)S(s).

The normal component of γ′′, κn(s), is the normal curvature of the
unit speed curve γ. The component in the direction of S, κg(s), is
the geodesic curvature of γ.

The coefficients of the second fundamental form of a simple surface
x : U → R3 are the functions Lij defined on U by Lij = 〈xij ,n〉. The
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Christoffel symbols are the functions Γkij(1 ≤ i, j, k ≤ 2) defined on U by

Γkij =

2∑
l=1

〈xij ,xl〉glk.

Since (Lij) is a symmetric matrix, (Γkij) is as well. The Lij coefficients

measure the normal component of xij while Γkij measures the tangential
components.

Gauss’s Formulas

Let x : U → R3 be a simple surface. Then the following formulas
hold:

(a) xij = Lijn +
∑

k Γkijxk.

(b) For a unit speed curve γ(s) = x(γ1(s), γ2(s)),

κn =
∑
i,j

Lij(γ
1)′(γ2)′

(c) κgS =
∑

k[(γ
k)′′ +

∑
ij Γkij(γ

i)′(γj)′]xk.

The Christoffel coefficients are intrinsic, meaning they can be determined
by measurements within the surface (meaning they only depend on (gij)), as
is the geodesic curvature. A two-dimensional being would only have concepts
of lengths and angles and the derived metric coefficients, and those would be
the only geometric concepts they know. Something like the normal vector
to the surface would be incomprehensible.

The Levi-Civita Connection

From Gauss’s formulas we obtain that 〈xij ,xl〉 =
∑

k Γkijgkl. We write
this quantity as Γij|l and is called a Christoffel symbol of the first

kind. The traditional Γkij is a Christoffel symbol of the second

kind. For a coordinate patch x : U → R3 with metric coefficients gij

Γlij =
1

2

2∑
k=1

gkl
Å
∂gik
∂uj

− ∂gij
∂uk

+
∂gkj
∂ui

ã
.

This relationship outlines a connection – an affine transformation
between tangent spaces. This particular connection which is torsion-
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free and preserves the metric tensor is known as the Levi-Civita con-
nection and is closely related to the Levi-Civita parallel trans-
port discussed in section 4.6.

4.5 Geodesics

In our normal multivariate plane geometry, we rely heavily on the straight
line. Now that we’re looking at arbitrary surfaces, we want to define curves
that serve similar roles. Straight lines have several important properties,
and we need to choose how to represent those properties on an arbitrary
surface.

1. Straight lines have zero plane curvature;

2. Straight lines give the shortest path between two points;

3. Any two points have a unique straight line joining them;

4. All tangent vectors to a straight line are parallel.

We can find a general solution that will have properties (1) and (2), but not
(3); (3) is not true in general, as it makes assumptions about the topological
properties of the surface, such as simple connectivity. The next section will
focus on property (4).

Geodesic

A geodesic on a surface M is a unit-speed curve on M with geodesic
curvature equal to zero everywhere; formally, γ(s) ∈M is a geodesic
if and only if 〈n × T,T′〉 = 0. If γ is the unit speed curve γ(s) =
x(γ1(s), γ2(s)) on a coordinate patch x, then γ is a geodesic if and
only if

γk
′′

+
∑

Γkijγ
i′γj ′ = 0.

More generally, a unit speed curve γ on a surface M is a geodesic if
and only if γ′′ is everywhere normal to the surface.

This immediately satisfies property (1).

We can define the geodesics for a surface of revolution. Let M be the
surface of revolution generated by the unit speed curve (r(t), z(t)). Then
every meridian is a geodesic, and a circle of latitude is a geodesic if and only
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if the tangent x1 to the meridians is parallel to the axis of revolution at all
points on the circle of latitude.

We can determine a straight line given a point and a direction at that point.
The same is generally true for geodesics. Let P be a point on a surface M
and let X be a unit tangent vector at P . Then if s0 ∈ R is given, there
exists a unique geodesic γ with γ(s0) = P , γ′(s0) = X. A surface is com-
plete if every geodesic extends indefinitely; M is complete if and only if it
is complete as a metric space.

Property (2) is also satisfied; the proof is involved and is a cornerstone
of the calculus of variations, but is omitted here for brevity. Let γ be a unit
speed curve between points P = γ(a) and Q = γ(b). If γ is the shortest
curve between P and Q, then it is a geodesic.

4.6 Parallelism

Here we talk about Property (4), attempting to generalize the notion of
“parallel.” More specifically, we want to generalize the notion of parallel
vectors as opposed to parallel lines; in general, the notion of parallel lines
(as can be seen on a sphere) do not exist.

A vector field along a curve γ : [a, b] → M is a function X which
assigns to each t ∈ [a, b] a tangent vector X(t) to M at γ(t). A differentiable
vector field X(t) along γ is parallel along γ if dX/dt is perpendicular to
M . Equivalently:

0 =
dXk

dt
+
∑

ΓkijX
idγ

j

dt
.

This characterization is intrinsic (independent of parametrization).

Now let X̃ be a vector tangent to M at γ(t0). Then there exists a unique
vector field X(t) that is parallel along γ(t) with X(t0) = X̃. This conclusion
follows from turning the previous equation into an initial-value system of
differential equations:

dXk

dt
= −

∑
Γkij(γ

1(t), γ2(t))Xi(t)
dγj

dt
,

Xk(t0) = X̃k.

The vector field X in the previous theorem is called the parallel translate,
parallel transport, or Levi-Cevita connection (for general manifolds)
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of X̃ along γ. Just as in plane geometry, the parallel translate preserves the
angle and length of vectors; however, if two different curves connect P and
Q, the vector field at Q depends on which curve is used.

Given this notion of “parallel,” we say that a regular curve γ is maxi-
mally straight if dγ/dt is parallel along γ. This happens only when dt/ds
is constant and γ(t(s)) is a geodesic. This completes our generalization of
Property (4).

4.7 The Second Fundamental Form and the Weingarten Map

The previous sections revolved around the geodesic curvature; here we con-
sider the normal curvature, a measure of how M is curving in the direction
of T; if we just want to measure how M is curving without direction, we
introduce the Weingarten map L.

The second fundamental form II on M is the bilinear form on TPM
for each point P ∈M given by

II(X,Y) =
∑
ij

LijX
iY j

where
X =

∑
Xixi, Y =

∑
Y ixj

and Lij are the coefficients 〈xij ,n〉.

(a) II is a symmetric bilinear form on TPM ;

(b) If γ is a unit speed curve with tangent T, then κn = II(T,T);

(c) If α and β are regular curves with α(0) = β(0) and whose velocity
vectors are dependent at t = 0, then α and β have the same normal
curvature at t = 0.

Let γ(s) be a unit speed curve in a surface M with normal curvature κn at
P . Let γ̄ be the curved formed by the intersection of M with the plane Π
through P spanned by n and γ′. Then |κn| is the curvature κ̄ of the plane
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curve γ̄.

A subset R of M is open if for each P ∈ R there is an ε-neighborhood of P
in M contained in R. A function f : R → R is differentiable if for every
C1 curve α(t) with α(0) ∈ R the derivative (d(f ◦ α)/dt)(0) exists. Let
α(0) = P and let X ∈ TPM be X = (dα/dt)(0). The directional deriva-
tive of f in the direction of X is Xf = (d(f ◦ α)/dt)(0). Xf is well-defined
and is independent of our choice of α.

Let x : U → M be a coordinate patch for M about P = x(0, 0). If
X =

∑
Xixi then Xf =

∑2
i=1Xi(∂(f◦x)/∂ui)(0, 0). The directional deriva-

tive is linear, meaning that for X,Y ∈ TPM ,

(αX + βY)f = α(Xf) + β(Yf).

The Weingarten Map

The Weingarten map L is, for each P ∈M , the function L : TPM →
R3 given by

L(X) = −Xn.

n is only determined up to sign, so so is L. L is a linear transfor-
mation from TPM to TPM . L is a self-adjoint (symmetric) linear
transformation, i.e.

II(X,Y) = 〈L(X),Y〉 = 〈X, L(Y)〉.

28



Weingarten Equations

Llk is the representation of L with respect to the basis {x1,x2}. If
L(xk) =

∑
Llkxl, then Llk =

∑
Likg

il. We say that Llk is obtained
from Lik by raising an index to a tensor of type (1, 1) because
it has one upper and one lower index. We then get Weingarten’s
equations for a surface M , that

nj = −
∑

Lkjxk.

4.8 Principal, Gaussian, Mean, and Normal Curvature

At this point we have several methods to determine how a surface curves.
We can use the normal curvature of curves, but this is unappealing as it
involves splitting a surface into infinitely many curves. We also have the
Weingarten map L, which tells us how the normal vector changes along the
surface. This section discusses two more types of curvature that arise natu-
rally from the linearity of L.

If we knew all possible values of κn at P , we would now how M curves.
The first step is to find the minimum and maximum values of κn, which we
can do by finding the max and min of II(X,X) as X runs over TPM . We
can use the Lagrange multiplier and find the critical values of

f(X, λ) = II(X,X)− λ(〈X,X〉 − 1).

Evaluation yields the relation that

L(X) = λX,

implying that λ is an eigenvalue of L and X is the corresponding eigenvector.
The self-adjointness of L means that real values of λ exist; the max and min
must exist since the set of unit vectors in TPM is compact.

Principal Curvature

The eigenvalues of L are the roots of the characteristic equation

0 = λ2 − (tr(L))λ+ det L.

If λ,X is an eigenvalue-eigenvector pair, and Y ∈ TPM is unit-length
such that 〈X,Y〉 = 0, then Y is also an eigenvector. In fact, there
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exist orthogonal directions such that the normal curvature κn attains
its maximum in one direction and minimum in the other.

The principal curvatures of M at a point P are the eigen-
values of L, denoted κ1 and κ2 where κ1 ≥ κ2 by convention. The
corresponding eigenvectors are the principal directions of M at P .
If κ1 = κ2, we call the corresponding point P an umbilical point; a
point at which the surface is locally spherical. A line of curvature
on a surface M is a curve whose tangent vector at each point is a
principal direction at that point.

Euler’s Curvature Theorem

Let Y be a unit vector tangent to M at P . Then

II(Y,Y) = κ1 cos2 θ + κ2 sin2 θ,

where θ is the angle between Y and the principal direction corre-
sponding to κ1.

Gaussian and Mean Curvature

The Gaussian curvature of M at P is K = κ1κ2 = det L. The
mean curvature is H = 1

2(κ1 + κ2) = 1
2tr(L). H is the average

normal curvature; surfaces with H = 0 are called minimal surfaces.

Gaussian curvature is difficult to understand geometrically. To interpret it,
we need to understand the concept of surface integration. If x : U → R3 is
a parametrized surface the area of a subset R is

A(R) =

∫∫
x−1(R)

(x1 × x2) · ndu1du2.

The normal spherical image or Gauss map of a surface is a function
v : M → S2 which sends each point of M to its normal. The Gaussian
curvature K at P is the limit of the ratio A(v(R))/A(R) as R shrinks to
P , where A is signed area.
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Dupin Indicatrix

The Dupin indicatrix D of M at P ∈M is the subset of TPM given
by

D = {X ∈ TPM |II(X,X) = 1} ∪ {X ∈ TPM |II(X,X) = −1}.

We typically write this as D = D+ ∪ D−. Locally, D+ and D− are
(possibly degenerate) conic sections – an ellipse (synclastic, K > 0),
a conjugate pair of hyperbolas (anticlastic, K < 0), two parallel
lines (monoclastic, K = 0), or empty.

Nonzero vectors X, Y are conjugate directions if II(X,Y) = 0. A tangent
vector X at P is asymptotic if II(X,X) = 0. An asymptotic curve is one
whose tangent vector is an asymptotic direction at each point.

4.9 Riemannian Curvature Tensor, Gauss’s Theorema Egregium,
and the Codazzi-Mainardi Equations

Riemannian Curvature Tensor

Let vx : U → R3 be a coordinate patch on M with Christoffel symbols
Γkij and second fundamental form coefficients Lij . The Riemannian
curvature tensor with indices (i, l, j, k) is

Rlijk =
∂Γlik
∂uj

−
∂Γlij
∂uk

+
∑

(ΓpikΓ
l
pj − ΓpijΓ

l
pk)

for all 1 ≤ i, l, j, k ≤ 2.

Of course, this calculation is cumbersome; we usually use the following equa-
tions to simplify our calculations. Gauss’s equations state that

Rlijk = LikL
l
j − LijLlk,

and the Codazzi-Mainardi equations further make elucidate that

∂Lij
∂uk

− ∂Lik
∂uj

=
∑

(ΓlikLij − ΓlijLik).

The formal definition provides an intrinsic characterization of the Rieman-
nian curvature tensor; Gauss’s equation provides an extrinsic one in terms
of the second fundamental form and Weingarten map. From here we get a
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remarkable result – that even through Gaussian curvature is defined extrin-
sically (in terms of n or L), the Gaussian curvature K of a surface is
an intrinsic property. This is Gauss’s Theorema Egrigium . Perhaps
even more astoundingly, this tells us that we can characterize the Gaussian
curvature even if we fix all but one of our indices:

K =
∑
l

Rl121

gl2
g

The Codazzi-Mainardi equations are important in that they give integrabil-
ity conditions, as we will see in the next section.

4.10 Isometries and the Fundamental Theorem of Surfaces

Here we examine the question of when two surfaces are geometricallly the
same; isometry (the same intrinsic geometry) and rigidity (intrinsic and
extrinsic geometry). A function f : M → N between surfaces is differen-
tiable if for each P ∈M there are coordinate patches x and y about P and
f(P ) respectively such that y−1 ◦ f ◦ x is differentiable as a function of two
variables. An isometry from M to N is a bijective differentiable function
f : M → N such that for any curve γ : [c, d] → M , the length of γ equals
the length of f ◦ γ. M and N are isometric if such an isometry exists. As
an example, the helicoid and catenoid are isometric:

The meridians of the catenoid become the straight lines of a helicoid, and
the circles of latitude become circular helices in in the latter.
This particular example might seem similar to Gauss’s Theorema Egrigium,
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and for good reason; locally isometric surfaces have the same Gaus-
sian curvature at corresponding points.

We now turn to the stronger concept of rigidity. A special orthogonal
square matrix A is one with a determinant of 1 with A> = A−1. A
represents a rotation as a linear transform. f : Rn → Rn is a rigid mo-
tion if there is a rotation A and a vector b such that f(v) = (Av) + b.
Two surfaces are rigidly equivalent if there is a rigid motion f such that
f(M) = N . In general, surfaces that are isometric need not be rigidly equiv-
alent. Recall that from the Fundamental Theorem of Curves, curvature and
torsion determine a space curve up to position – we now say that the space
curve is determined up to a rigid motion.

Fundamental Theorem of Surfaces

Let U be an open set in R2 such that any two points of U may be
joined by a curve in U and let Lij : U → R and gij : U → R be
differentiable functions for i = 1, 2 and j = 1, 2 such that

(a) L and g are symmetric, g11 > 0, g22 > 0, and det g > 0, and

(b) L and g satisfy Gauss’s equations and the Codazzi Mainardi
equations.

Then if P ∈ U , there is an open set V ⊂ U containing P and a simple
surface vx on V such that g and L are the matrices of of I and II,
the first and second fundamental forms. Furthermore, if y : V → R
is another simple surface with I = g and II = L, then y(V) is rigidly
equivalent to x(V).

4.11 Surfaces of Constant Curvature

This section discusses surfaces of constant Gaussian Curvature, which will
help us determine all such surfaces that are also surfaces of revolution. Recall
that a surface of a revolution is of the form

M = {(r(s) cos θ, r(s) sin θ, z(s)) : 0 ≤ θ ≤ 2π, s ∈ (s0, s1)}

where
α(s) = (r(s), z(s))

is a regular unit-speed curve defined in an interval (s0, s1), with r(s) > 0;
M is a surface that can be covered with two coordinate patches. Since α is
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unit-speed, the metric matrix is

(gij) =

Å
1 0
0 r2

ã
and the second fundamental form has matrix

(Lij) =

Å
r′z′′ − z′r′′ 0

0 rz′

ã
.

The Gaussian curvature K of M can then be derived as

K = −r
′′

r
.

If M is the surface of revolution generated by the unit speed curve α and
M has constant positive Gaussian curvature K = a2 >, then α is given by

r(s) = A cos(as), |s| < π/2a

z(s) = ±
∫ s

0

»
1− a2A2 sin2(at)dt+ C.

If both M1 and M2 have the same positive Gaussian curvature, then M1

and M2 are locally isometric. All surfaces of revolution with constant cur-
vature a2 are locally isometric to the sphere of radius 1/a, although their
global properties are different; for example, on a sphere, the equator can be
deformed to a point via a homotopy (see my notes for Math202A) passing
through the north pole; this is not the case for the napkin ring (although
the two are isometric).

If M is a surface of revolution and M has constant curvature zero then M
is either a part of a circular cylinder, part of a plane, or part of a circular
cone; all of these surfaces are locally isometric.
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Finally, if K = −a2 for a > 0 (constant negative Gaussian curvature) then
we get one of the possibilities:®

r(s) = Aeas

z(s) = ±
∫ s

0

√
1− a2A2e2atdt+D{

r(s) = B cosh(as)

z(s) = ±
∫ s

0

»
1− a2B2 sinh2(at)dt+D®

r(s) = C sinh(as)

z(s) = ±s0
√

1− a2C2 cosh(at)dt+D

In the first of these cases, the substituion aAeat = sinφ, the integral describ-
ing z(s) may be computed. This curve is called a tractrix or drag curve;
intuitively, it is the curve formed by “dragging” a rope off the “ground” (the
plane) up the z-axis. The surface of revolution generated by the tractrix is
called the pseudo-sphere of radius 1/a.

5 Global Theory of Space Curves

This section is a spatial interpretation of the rotational index theorem from
chapter 3, and the tangent spherical image from chapter 4.

5.1 Fenchel’s Theorem

The total curvature of a regular curve α : [0, L]→ R3 is∫ L

0
κds.

Since κ = |T′|, the total curvature is the length of the tangent spherical
image

T : [0, L]→ S2 = {(x, y, z) ∈ R3|x2 + y2 + z2 = 1} = {a ∈ R3||a| = 1}.
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If A,B ∈ S2, then ÃB is the distance from A to B across the shortest
geodesic (the great circle through A and B). The open hemisphere with
pole N is the set

{X ∈ S2 : X̄N < π/2}.

The closed hemisphere with pole N is the set w

{X ∈ S2 : X̄N ≤ π/2}.

If ÃB = π then A and B are antipodal. If α is a regular closed curve,
its tangent spherical image does not lie in any open or closed hemisphere,
unless it lies in the great circle bounding the hemisphere.

Let γ(t) be a closed C1 curve on S2. The image C of γ is contained in
an open hemisphere of either of the following two conditions hold:

(a) The length l of γ is less than 2π; or

(b) l = 2π but the image of γ is not the union of two great semicircles.

Fenchel’s Theorem (1929)

The total curvature of a closed space curve α is at least 2π. It equals
2π if and only if α is a plane convex curve.

5.2 The Fary-Milnor Theorem

Consider a sphere with an oriented great circle (meaning the great circle
is parameterized in a specific direction). Then each great circle corresponds
to a point on the sphere (the pole of the hemisphere to the left of that great
circle). This relation is bijective. The measure of a set of oriented great
circles is the area of the corresponding subset of S2.

If W ∈ S2, let W⊥ be the corresponding great circle. For a regular curve γ
with image C , let nγ(W ) be the number of points in C ∩W⊥; note nγ(W )
is a geometric property.

Crofton’s Formula

Let C be the image of a regular curve γ(t) on S2 of length l. The
measure of the set of oriented great circles that intersect C , counted
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with multiplicity, is 4l.

Now we define
D2 = {(x, y) ∈ R2|x2 + y2 ≤ 1}

is the closed unit disk.

S1 = {(x, y) ∈ R2|x1 + y1 = 1}

is the unit circle.

Fary-Milnor Theorem

If α is a simple knotted regular curve, then the total curvature of α
is at least 4π.

5.3 Total Torsion

We have already studied
∫
κds; here we examine the (weaker) results of∫

τds. The total torsion
∫
τds of a closed unit-speed curve α(s) is zero.

The converse, proved by Scherrer in 1940, is also true; if M is a surface in
R3 with total torsion zero for all closed curves in M , then M is part of a
plane or sphere.

6 Global Theory of Surfaces

Much like Chapters 3 and 5 elevate the concepts from Chapter 2 to global
results (and are consequently much more difficult than Chapter 2), this
chapter addresses the global version of Chapter 4.

6.1 Simple Results

This first section deals with some simple results relating a surface to its
topology.

Compactness

If P ∈ R3, then |P | is the distance from P to the origin O of R3.
Let B̄r = {P ∈ R3||P | < r}. M ⊂ R3 is bounded if there is an r > 0
such that M ⊂ B̄r. M is closed if for each sequence {Pn} of points
such that Pn ∈M and limn→∞ Pn = P exists, P is in M . If M ⊂ R3
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is both closed and bounded, then M is compact.

If M is compact, the smallest enclosing ball B̄r must intersect M at some
point in its boundary. As a result, every compact surface M must have
positive Gaussian curvature at at least one point. Meusnier’s theorem
(1785) builds off this notion – if a surface M sphere is a compact connected
surface whose points are all umbilics, then M must be a sphere.

6.2 Geodesic Coordinate Patches

If x : U → R3 is a coordinate patch such that g11 = 1 and g12 = 0, then x
is called a geodesic coordinate patch. If, in addition, there is a curve γ
on M defined on [a, b] such that γ([a, b]) ⊂ x(U) and such that the u2-curve
through a point of the image of γ is γ itself, then x is called a geodesic
coordinate patch along γ. We can construct a geodesic coordinate patch
by selecting a non-closed curve α and creating a neighborhood of geodesics
perpendicular to α, so that all u1 curves will be geodesics and the u2 curve
through a point of the image of α is α.

The first fundamental form of the geodesic coordinate patch then has matrixÅ
1 0
0 h2

ã
with h = |x2| > 0. In the special case where α is unit-speed, the function
h = |x2| has two important properties; that h(0, u2) = |α′(u2)| = 1 and
∂(h2)/∂u1(0, u2) = α′′(u2) is normal to the surface. These properties then
tell us that any two surfaces of the same constant Gaussian curvature must
be locally isometric.

More specifically, for two surfaces of the same constant curvature if there
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are any two points P and Q in M and N with geodesics α and γ through P
and Q (all respectively), then there is a local isometry f of a neighborhood
U ′ of P with a neighborhood V ′ of Q such that f(P ) = Q and γ = f ◦α. In
particular, if M = N there is a local isometry mapping P to Q (a “trans-
lation”) and if P = Q there is a local isometry sending a given geodesic
through P to another given geodesic through P (a “rotation”).

6.3 Orientation and Angular Variation

Let γ(t) be a piecewise regular simple closed curve in a surface M with
period L. Then suppose Z(t) is a continuous vector field along γ which is
differentiable along the regular segments of γ. In general, Z(0) 6= Z(L). We
are interested in seeing how different these vectors are (in terms of orienta-
tion). In three dimensions, the cosine of the angle between space vectors is
well defined, but the orientation is not (there is no good definition of “coun-
terclockwise”).

A surface M is orientable if there is a continuous function v : M → S2

with v(P ) normal to M at P for all P ∈M . More intuitively, we may con-
sider a surface orientable if it has a clearly defined “outside” and “inside” –
and can therefore define “counterclockwise” consistently across the surface.
The sphere, cylinder, and torus are all orientable (but the Möbius strip and
Klein bottle are not). A deep topological result: every compact three-
dimensional surface is orientable. The angle between vectors X and
Y is defined up to sign by the inner product, i.e. cos θ = 〈X,Y〉/|X||Y|.
The sign of θ is determined by the triple product [X,Y,n] (equivalently, the
right hand rule). We denote this angle between X and Y as ^(X,Y).

A subset R of a surface M is a region in M if R is open and if any two
points of R may be joined by a curve in R. If R is a region in M , then the
boundary of R, ∂R, is the set {P ∈ M |P 6∈ R, ∃{Pn} ∈ R, limPn = P}.
A curve γ bounds a region R if the image of γ is the boundary of R and the
intrinsic normal S points into R at all points of γ and likewise −S points
out of R.

To measure the total change in angle in Z along γ we need to replace the
x-axis. Suppose γ bounds R. Then it can be shown that there is a region S
in M containing R and the image of γ and a field of unit vectors in S ; i.e. a
differentiable assignment of unit tangent vectors V(P ) to each point P ∈ S .
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Let α(t) = ^(V(γ(t)),Z(t)) with α continuous, and hence differentiable.
Once V is fixed, α is unique up to an integral multiple of 2π so dα/dt is a
function in a single variable (Z). The total angular variation of Z along
γ with respect to V is

δVα =

∫ L

0

dα

dt
dt.

In general, δVα depends only on V; however, if we can continuously shrink
γ to a single point in R, we can remove this dependency.

Null-homotopic Map

Let γ be a closed curve which bounds a region R. Let σ be any closed
curve of period L which is either γ or lies in R. Let σ(0) = x0. σ is
null-homotopic (it is homotopic to a constant function) in R if for
each s ∈ [0, 1] there is a closed curve σs in M such that

(a) σs(0) = x0;

(b) σ0(t) = σ(t) and σ1(t) = x0 (so σ1 is the constant curve);

(c) σs(t) ∈ R for all 0 < s ≤ 1 and t ∈ (0, L);

(d) The function Γ : [0, L] × [0, 1] → M given by Γ(t, s) = σs(t) is
continuous.

If γ is null-homotopic in R then the total angular variation is inde-
pendent of V.

6.4 The Gauss-Bonnet Formula

A region of a surface is simply connected if every closed curve in that
region is null-homotopic. The sphere is simply connected (every closed curve
on the sphere can be shrunk continuously to a point); the torus is not.
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Gauss-Bonnet Formula

Let γ be a piecewise regular curve contained within a simply con-
nected geodesic coordinate patch and bounding a region R in the
patch. Let the jump angles at the junctions be α1, ..., αn. Then∫∫

R
KdA+

∮
γ
κgds+

∑
αi = 2π.

As an example, take the unit sphere S2. Let γ be the triangle whose sides
are geodesics and whose interior angles are β1, β2, β3. Then αi = π − βi
(interior angles are jump angles).

2π =

∫∫
R
KdA+

∮
γ
κgds+

∑
αi = area(R) + 0 + 3π −

∑
βi.

The quantity
∑
βi−π equals the area of R in spherical geometry (Legendre),

and is called the angular excess of γ.

6.5 Euler Characteristic

A polygon on a surface M is a piecewise regular curve γ whose segments
are geodesics and which bounds a simply connected region R. Let M be
compact. Suppose M can be broken into regions bounded by polygons, each
region in a simply connected geodesic coordinate patch. If V is the number
of vertices, E edges, and F faces, the Euler characteristic of M with
respect to this particular decomposition is

χ = F − E + V.

The Gauss-Bonnet formula can then be restated, for compact M , as∫∫
M
KdA = 2πχ.

The quantity on the LHS is called the curvatura integra or total curva-
ture of the surface. χ is well-defined, so it must be independent of how the
polygons are chosen, so long as each is small enough to be contained in a
simply connected geodesic coordinate patch. Since χ is an integer, we notice
that (1/2π)

∫∫
M KdA must be an integer as well (without a priori reason).

We choose geodesic polygons here so the
∮
γ κgds term disappears from the

Gauss-Bonnet formula.
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χ has been defined combinatorially; it is an intrinsic geometric invariant;
we can also define it topologically. Every compact surface in R3 “looks like”
a sphere with handles. The number of handles is the geometric genus of
M and is denoted g:

If M is a compact surface in R3, then χ = 2(1−g). The Euler characteristic
of a compact surface in R3 is even and at most 2; we can then generalize
the Gauss-Bonnet theorem for this particular context.

Let γ be a piecewise regular curve in an oriented surface M . Suppose γ
bounds R; then∫∫

R
KdA+

∮
γ
κgds+

∑
(π − αi) = 2πχ(R),

where αi are the interior angles of γ and χ is the Euler characteristic of R
found by splitting R into polygons and counting those edges and vertices
lying on γ in addition to those in R.

6.6 Theorems of Jacobi and Hadamard

Here we examine two more theorems in global differential geometry; their
proofs are applications of the Gauss-Bonnet theorem. Recall that for a
regular space curve γ of positive curvature, the normal spherical image σ is
the curve σ(s) = N(s) where N is normal to γ.
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Jacobi’s Theorem (1842)

Let γ be a regular closed unit-speed space curve with positive curva-
ture. Assume that σ, its normal spherical image, is a simple curve.
Then it divides the unit sphere into two regions of equal area.

Hadamard’s Theorem (1897)

Let M be a compact surface in R3. If K > 0 everywhere, then the
surface is necessarily convex.

6.7 Index of a Vector Field

Let M be a compact surface with a vector field V. P ∈ M is an isolated
zero of V if there is an open set U about P with P the only point in U
where V is zero. Suppose P is isolated and let γ be a simple closed piecewise
regular curve bounding a simply connected region R such that P is the only
zero in R. The index of V at P is

iP (V) =
1

2π
δ^(U,V)

where U is any field of unit vectors in R. If M is compact with a vector field
V with finitely many zeros, then the total index of V is I(V) =

∑
iP (V).

Poincaré-Brouwer Theorem

If M is a compact surface and V is a vector field on M with finitely
many zeros, then I(V) = χ(M), the Euler characteristic of M . This
implicitly implies that any vector field on S2 must have a zero; this
is also known as the hairy ball theorem.

7 Introduction to Differential Manifolds

Just as in Chapter 4 we introduced the ideas of “space” (in the form of
the surface) and “line” (in the form of the geodesic), here we take a more
abstract view generalizing to Euclidean n-space. However, this is slightly
different from our previous treatment; we previously treated surface as the
3-D image of a function on a 2-D domain; however, a manifold need not lie
in the next-dimensional Euclidean space (they don’t need to be in Euclidean
space at all).
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7.1 Analytic Preliminaries

We begin with a quick review of some tools from analysis. Let X be a set.
A metric d on X is an assignment of an nonnegative number d(x, y) to each
pair of points x, y ∈ X such that:

(a) d(x, y) = 0 if and only if x = y;

(b) d(x, y) = d(y, x);

(c) if z ∈ X then d(x, y) ≤ d(x, z) + d(z, y).

A metric space is a space with a metric d.

If x ∈ X and ε > 0 then the open ball of radius ε about x is

Bε(x) = {y ∈ X|d(x, y) < ε}.

S ⊂ X is open in X if for each x ∈ S there is an ε > 0 such that Bε(x) ⊂ S.
If S is open and x ∈ S, then S is a neighborhood of x. The finite inter-
section of open sets is open, and the union of open sets is open. For any
two nonidentical points in X, there are two non-overlapping open sets in X
such that one point is in one set and the other point is in the other. If f
maps the metric space X into the metric space Y , then f is continuous if
every open set in Y has preimage (under f) in X.

We now review some basic calculus. If f maps Rn to Rn, we may rep-
resent f as a set of m functions of n variables. If f is differentiable then the
Jacobian at each point p ∈ Rn is:

Jf (p) =

à
∂f1

∂x1
(p) . . . ∂f1

∂xn (p)
∂f2

∂x1
(p) . . . ∂f2

∂xn (p)
. . .

∂fm

x1
(p) . . . ∂fm

xn (p)

í
.

Diffeomorphism

Suppose U is open in Rn, V is open in Rn, and f : U → V . f is a Ck

diffeomorphism if f is Ck and there is a Ck function g : V → U
such that f ◦ g is the identity map on V . g is the inverse of f.
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The inverse function theorem states that if U is an open set in Rn, p ∈ U ,
and f : U → Rn, and if Jf (p) 6= 0, then there are neighborhoods Np of p
and Nϕ(p) of ϕ(p) such that

f |Np : Np → Nϕ(p)

is a diffeomorphism.

The implicit function theorem states that, if f : Rn+1 → R is a Ck

function, a ∈ Rn+1, and (∂f/∂ui)(a) 6= 0, then there is a neighborhood W
of a in Rn+1 and a Ck function g : Ŵ → R such that for n+ 1-dimensional
vector w, f(w) = 0 if and only if wi = g(ŵ).

7.2 Manifolds

Here we offer the definitions crucial to this chapter – that of the n-manifold.
It will be clear that “surfaces” as we have discussed are those 2-manifolds
which are embedded in R3. An n-manifold looks (locally) like Rn.

Let M be a metric space and p ∈ M . A coordinate chart about p
of dimension n is a neighborhood U of p and an injective continuous func-
tion ϕ : U → Rn such that Ũ = ϕ(U) is open in Rn. (U,ϕ) is a proper
coordinate chart if ϕ−1 : ϕ(U)→ U ⊂M is continuous.

n-Manifolds

Let M be a metric space. M is an n−dimensional C∞ manifold
if there is a collection A of coordinate charts (U,ϕ), called the atlas
of M , such that:

(a) for each p ∈ M there is a proper coordinate chart (U,ϕ) ∈ A
of dimension n with p ∈ U ;

(b) if (U,ϕ), (V, ψ) ∈ A with U ∩ V 6= ∅ then

ψ ◦ ϕ−1 : ϕ(U ∩ V )→ ψ(U ∩ V )

is a C∞ diffeomorphism of open sets of Rn;

(c) A is maximal with respect to conditions (a) and (b), i.e. A
contains all possible charts with the above properties.

This is essentially the same as the definition of a surface, except the direc-
tion of the maps is reversed and U is a subset of M instead of being a subset
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of Euclidean space.

If f : Rn+1 → R is C∞ then the gradient of f is the function ∇f : Rn+1 →
Rn+1 given by

(∇f)(p) =

Å
∂f

∂u1
(p), ...,

∂f

∂un+1
(p)

ã
.

Let f : Rn+1 → R be a C∞ function and

Mf = {x ∈ Rn+1|f(x) = 0}.

If (∇f)(p) 6= 0 for all p ∈ Mf then Mf is a C∞ n-manifold called the
hypersurface defined by f .

7.3 Lie Groups and Tangent Bundles

We would like to define an analogous concept to the tangent vector for our
n-manifolds. This analogy is non-trivial; for a surface in R3, we may define
a tangent vector by our well-defined notion of a derivative in R3. However,
for a manifold M , there is not necessarily any ambient Euclidean space, and
it does not make sense to differentiate a metric space.

In calculus, a vector v at a point may be viewed as a directional derivative,
as in v(f) =

∑
ai ∂f
∂ui

(p). We then define a tangent vector as a real-valued
operator on the set of differentiable functions on M obeying the proper-
ties of a derivative. Let p ∈ M and let f : M → R. f is differentiable
of class C l at p if there is a proper coordinate chart (U,ϕ) about p such
that f ◦ ϕ−1 : ϕ(U) → R is of class C l at ϕ(p). If f maps two C∞ mani-
folds, such that (U,ϕ) is a chart about p and (V, ψ) is a chart about f(p),
and φ ◦ f ◦ ϕ−1 is of class C l at ϕ(p), then f is differentiable. The set
F(M) = {f : M → R|f is of class C∞ is the set of all C∞ functions on a
manifold.

Lie Group

If G is a manifold which is also a group such that both µ : G×G→ G
by µ(x, y) = xy and ι : G → G by ι(x) = x−1 are of class C∞, then
G is known as a Lie group.

If W is an open set in M , with p ∈W , then there exists an open set V with
p ∈ V ⊂ W with a C∞ function f : M → R where f(W c) = 0, f(V ) = 1,
and 0 ≤ f(M) ≤ 1. From this, we say that if W is a neighborhood about
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p and F : W → R is differentiable, then there exists a differentiable set
F̃ : M → R which agrees with F on an open subset V of W . If you have
taken complex analysis, this is functionally equivalent to analytic continua-
tion.

The tangent vector to a manifold M at a point p is a function
Xp : F(M) → R, whose value at f is denoted Xp(f), such that for all
f, g ∈ F and r ∈ R:

(a) Xp(f + g) = Xp(f) +Xp(g);

(b) Xp(rf) = rXp(f);

(c) Xp(fg) = f(p)Xp(g) + g(p)Xp(f).

Let (U,ϕ) be a chart about p ∈M and let u1, u2, ... be Cartesian coordinates
in Rn. Then (∂/∂xi)p is the tangent vector given byÅ

∂

∂xi

ã
p

(f) =
∂(f ◦ ϕ−1)

∂ui
(ϕ(p)).

The value of this derivative depends entirely on the chart used. The tangent
space to M at p, TpM , is the set of all tangent vectors to M at p. The
disjoint union of all tangent spaces of M ,

TM =
⊔
p∈M

TpM,

is known as the tangent bundle of M .

7.4 Lie Brackets

The field of vectors X is an assignment of a tangent vector Xp ∈ TpM to
each p ∈M . If X is a field of vectors and f ∈ F(M), then we may define a
real-valued function Xf on M by (Xf)(p) = Xpf . If Xf ∈ F(M) for each
f ∈ F(M), then X is called a vector field. The collection of all vector fields
on a surfaces is denoted as X(M).

Lie Bracket

If X,Y ∈ X(M), then the Lie bracket of X and Y , [X,Y ], is the
field of vectors defined by

[X,Y ]pf = Xp(Y f)− Yp(Xf)
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for f ∈ F(M) and p ∈M . [X,Y ] is a vector field on M .

If X,Y, Z ∈ X(M) and r ∈ R, then

(a) [X,Y ] = −[Y,X] and [rX, Y ] = r[X,Y ];

(b) [X + Y,Z] = [X,Z] + [Y,Z], [Z,X + Y ] = [Z,X] + [Z, Y ];

(c) (Jacobi’s Identity) [[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0.

7.5 Differential of a Map

If Φ : M → N is differentiable, the differential of Φ at p is the function
(Φ∗)p : TpM → TΦ(p)N defined by

(Φ∗)p(Xp)(f) = Xp(f ◦ Φ).

The differential is well-defined, i.e.

Φ : M → N, Xp ∈ TpM =⇒ (Φp)∗(Xp) ∈ TΦ(p)
N.

If Φ : M → N and Ψ : N → P are differentiable maps of the manifolds
M,N,P then the differential of the composition of Φ and Ψ is equal to the
composition of their individual differentials:

(Φ ◦Ψ)∗ = (Φ)∗ ◦ (Ψ)∗.

If Mm and Nn are manifolds, then M is a submanifold of N if there is a
differentiable function Φ : M → N such that both Φ and (Φ∗)p are injective
for all p; Φ is then called an embedding of M in N . The dimensionality of
M is at most that of N .

If M = Mf is the hypersurface defined by f : Rn+1 → R, then TpM is
isomorphic (as a vector space) to

(Φ∗)pTpM = {Xp ∈ TpRn+1|〈∇fp, Xp〉 = 0}

where Φ is the inclusion of M in Rn+1. The concept of embeddings is a deep
and complex subject and is better left to a formal examination of differential
topology; however we do present the following theorem:
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Whitney Embedding Theorem

Every n-manifold embeds in Rn+1.

7.6 Linear Connections

Recall that we were able to define a parallel vector field to a surface by
differentiating the vector field along a curve in the direction of its tangent,
and from there arrived at the definition of a geodesic (a curve along which
the tangent vector field is parallel). This section explores the generalization
of differentiating a vector field with respect to a vector field by introducing
the linear connection.

A linear connection (or just a connection) on M is a linear function
∇ : X(M)× X(M)→ X(M) (denoted ∇XY ) such that

∇X+Y Z = ∇XZ +∇Y Z, ∇fXY = f∇XY, ∇XfY = (Xf)Y + f∇XY.

If ∇ is a connection on M and (U,ϕ) is a proper coordinate chart, then
the Christoffel symbols of ∇ with respect to (U,ϕ) are the functions
Γkij ∈ F(U):

∇∂/∂xi
Å ∇
∇xj

ã
=
∑
k

Γkij
∂

∂xk
.

Note that unlike before, this formulation is not symmetric.

Z is a vector field along α : I → M if Z assigns to each t ∈ I an el-
ement Zα(t) ∈ Tα(t)M such that t → Zα(t)(f) is a differentiable real-valued
function of t for each f ∈ F(M). The tangent vector field Tα is given by
(Tα)α(t) = (α∗)t(d/dt).

Let α : I → M and Y ∈ X(M). Let t0 be given and let X be any vec-
tor field on M such that Xα(t0) = Tα(t0). ∇TY , the covariant derivative
of Y with respect to α, is the vector field defined by

(∇TY )α(t0) = (∇XY )α(t0).
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7.7 Riemannian Metrics

Riemannian Manifolds

A field of metrics g on a manifold M is an assignment of a linear
map gp : TpM × TpM → R to each p ∈ M such that for all Xp, Yp,
Zp ∈ TpM and r ∈ R:

(a) gp(Xp, Yp) = gp(Yp, Xp)

(b) gp(Xp, Xp) ≥ 0 with gp(Xp, Xp) = 0 if and only if Xp = 0.

A Riemannian metric on a manifold M is a field of metrics g
such that g(X,Y ) ∈ F(M) for all X,Y ∈ X(M). A Riemannian
manifold is a manifold with a fixed Riemannian metric.

If A : TpM → TqM is a linear transformation, it is an isometry if for
all Xp, Yp ∈ TpM , gp(Xp, Yp) = gq(AXq, AXp). A linear connection ∇ on a
Riemannian manifold is metrical if for all X,Y, Z ∈ X(M):

Xg(Y,Z) = g(∇XY,Z) + g(Y,∇XZ).

Note the similarity to the derivative of the dot product.

A linear connection ∇ is torsion-free if

∇XY −∇YX = [X,Y ] for all X,Y ∈ X(M).

This occurs precisely when the Christoffel symbols form a symmetric matrix.
The Fundamental Lemma of Riemannian Geometry states that for
every Riemannian manifold (M, g) there is a unique torsion-free metrical
linear connection ∇ on M ; this connection is known as the Riemannian
connection.

Hilber’s Theorem and Converse

If a connected Riemannian manifold M is complete as a metric space
under the metric induced by g, then any two points can be joined by
a geodesic which minimizes the distance between the points, where
the distance is given by

d(p, q) = inf |α|, |α| =
∫ b

a

»
gα(t)(Tα(t), Tα(t)dt.

The partial converse, the Hopf-Rinow theorem, states that if every
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geodesic on M may be extended indefinitely, then any two points may
be joined by a geodesic of minimal length and M is complete as a
metric space under the metric determined by g.

Gauss’s Theorema Egrigium gives us insight as to how to define the con-
cept of curvature on an arbitrary Riemannian manifold. The Riemann-
Christoffel curvature tensor of type (1, 3) is the map R : X(M) ×
X(M)× X(M)→ X(M) defined by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

A surface with R ≡ 0 is locally indistinguishable from Rn geometrically.

Ricci and Scalar Curvature

If Xp, Yp ∈ TpM , we may define Ξp(Xp, Yp) : TpM → TpM by

Ξp(Xp, Yp)Vp = R(Vp, Xp)Yp.

The Ricci curvature tensor S is an assignment to each p ∈ M of
a function Sp : TpM × TpM → R defined by

Sp(Xp, Yp) = tr(Ξp(Xp, Yp)).

If Mn is a Riemannian manifold with Ricci tensor S, then the scalar
curvature of M at p is

n∑
i=1

Sp((Xi)p, (Xi)p)

where {Xi} is an orthonormal basis for TpM . These two concepts
are widely applicable in the study of relativity in physics (although it
should be noted that in the context of relativity this is not Rieman-
nian geometry, as in physics we require an exclusively nondegenerate
(positive definite) metric as opposed to our general Riemannian one).
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