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Note to the Reader

These notes aim to provide a high level, but complete, introduction to probability. The
contents range from basic definitions, examples of distributions, to sampling methods.
Probability is a fundamental area of mathematics, one that powers almost every ana-
lytical discipline, from the pure sciences to economics and finance. An understanding
of the fundamentals is vital to be able to do important work in any field. Probability
theory is one area which is so core to virtually all aspects of life that it deserves such a
complete treatment.
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Probability Counting

※ Counting

The study of probability is complemented by the study of counting, more broadly known
as combinatorics. If we perform an experiment, we may note the number of possible
results, known as outcomes. The most fundamental principle of counting is that if
one experiment has 𝑛 outcomes, and a second experiment has 𝑚, there are 𝑚𝑛 total
possible outcomes between the two of them. In general, for 𝑟 experiments where each
experiment has 𝑛𝑖 outcomes, there are

∏
𝑛𝑖 total possible outcomes. Here we are going

to explore some of the most common, simple classes of counting problems.

1.1 Permutation

This problem of ordering objects is called a permutation. We can decompose this into
a series of experiments. The first experiment is to select one of 𝑛 objects. The second
experiment is to select one of 𝑛 − 1 remaining objects. Doing this for all 𝑛 objects, we
conclude there are 𝑛! = 𝑛(𝑛 − 1)...1 possible orderings. If all the objects are not distinct,
we are overcounting. For example, there are two ts in the word “permutation." These
identical ts could be in any of 2! possible arrangements. To adjust for this, if object 𝑖
appears 𝑛𝑖 times, we divide 𝑛! by 𝑛𝑖!, the number of orderings of object 𝑖, so the total
number is

𝑛!
𝑛1!𝑛2!...𝑛𝑘 !

1.2 Combination

Another problem is the act of selecting 𝑟 items out of 𝑛 possible items, called a combi-
nation. In this case, the order of the selected options doesn’t matter. There are 𝑛 ways
to choose one object, 𝑛−1 to choose the second, and so on, with 𝑛− 𝑟 +1 ways to choose
the last one (𝑛!/(𝑛 − 𝑟)!). We then divide this by the number of ways to arrange those 𝑟

objects, 𝑟! (since order doesn’t matter). We write the number of combinations of 𝑟 items
out of a pool of 𝑛 as (

𝑛

𝑟

)
=

𝑛!
(𝑛 − 𝑟)!𝑟! .

If the order of the selection did matter, we can reframe this permutation problem, where
we want to order 𝑛 items where the 𝑛 − 𝑟 unselected items can be thought of as being
“identical."

The values
(𝑛
𝑟

)
are sometimes referred to as binomial coefficients due to their prevalence

in the well-known binomial theorem.
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Probability 1.3 Multinomials

Binomial theorem

(𝑥 + 𝑦)𝑛 =

𝑛∑
𝑘=0

(
𝑛

𝑘

)
𝑥𝑘𝑦𝑛−𝑘

There is a recursive definition for
(𝑛
𝑘

)
. We can fix one of the 𝑛 objects. Then there are(𝑛−1

𝑟−1
)

collections of size 𝑟 that contain that object, and
(𝑛−1

𝑟

)
collections of size 𝑟 that do

not contain that object. So
(𝑛
𝑟

)
=

(𝑛−1
𝑟−1

)
+

(𝑛−1
𝑟

)
. This definition can be used to power a

proof by induction of the binomial theorem.

1.3 Multinomials

The last class of combinatorial problems involves counting the number of ways of
partitioning a set into 𝑟 subgroups, where subgroup 𝑖 has size 𝑛𝑖 , and

∑
𝑛𝑖 = 𝑛. There

are
( 𝑛
𝑛1

)
ways of picking 𝑛1 items for group 1. Then there are

(𝑛−𝑛1
𝑛2

)
ways of picking 𝑛2

items for group 2. Multiplying all these together yields(
𝑛

𝑛1 , ..., 𝑛𝑟

)
=

𝑛!
𝑛1!...𝑛𝑟 !

total possible configurations. The values
( 𝑛
𝑛1 ,...,𝑛𝑟

)
are known as multinomial coefficients.

Note that the above looks like a permutation, and we can think of it as one. Instead of
assigning objects to categories, we can consider having in our hands a set of labels –
𝑛1 labels that say “1", 𝑛2 labels that says “2", etc. Then lining up all of our objects, the
problem is equivalent to the number of orderings of labels we can assign, which is a
permutation problem.

1.4 Balls and Bins

The final problem we will consider in this brief introduction to combinatorics is the
famous “stars-and-bars" or “balls-and-bins" problem; this is a formulation that appears
countless times in computer science. Imagine we have 𝑛 distinct balls that we need to
allocate into 𝑟 distinct bins. There are 𝑟𝑛 possible allocations – for each ball, there are 𝑟

possible bins to put it in. The problem becomes more complex if we consider that the
balls are now indistinguishable.

(◦ ◦ ◦)(◦ ◦)(◦ ◦ ◦ ◦)(◦)

If each bin must have at least one ball, we can reformulate this in a way where we only
care about the divisions between groups of balls. We can picture having 𝑛 stars, which
we must separate into 𝑟 groups by placing 𝑟 − 1 bars between them. There are 𝑛 − 1
places we can put these bars, hence the total number of allocations is

(𝑛−1
𝑟−1

)
.

★★★ | ★★ | ★★★★ | ★

5



Probability Fundamentals

If not every bin needs a ball, we can think of the problem as having a total of 𝑛 + 𝑟 − 1
empty “slots," which we must fill with 𝑟 − 1 bars and 𝑛 stars. Then our answer is the
multinomial

(𝑛+𝑟−1
𝑛,𝑟−1

)
=

(𝑛+𝑟−1
𝑟−1

)
=

(𝑛+𝑟−1
𝑛

)
.

_ _ _ _ _ _ _ _ _ _ _ _ _ +★★★★★★★★★★ | | | → | ★★ | ★★★ | ★★★★★

※ Fundamentals

For a particular experiment, we denote with the symbol Ω the set of all possible out-
comes. A subset ℰ ⊂ Ω is called an event. These sets are subject to the common rules of
set algebra; namely, union (∪) intersection (∩), the empty set (∅), subset (⊂), superset
(⊃) and complement (ℰ𝑐) are defined as they would be for any general set. We also
abide by the general commutative, associative, and distributive laws, where union can
be though as an analogue to addition and intersection can be treated like multiplication.

DeMorgan’s Laws (
𝑛⋃
𝑖=1

ℰ𝑖

) 𝑐
=

(
𝑛⋂
𝑖=1

ℰ𝑐
𝑖

)
(

𝑛⋂
𝑖=1

ℰ𝑖

) 𝑐
=

(
𝑛⋃
𝑖=1

ℰ𝑐
𝑖

)

The most intuitive way to think about probability is in terms of relative frequency. If 𝑛(ℰ)
is the number of times event ℰ occurs in 𝑛 trials, we can define the probability of ℰ as

𝑃(ℰ) = lim
𝑛→∞

𝑛(ℰ)
𝑛

.

We make a big assumption here, and that is that this limit exists and is well-defined.
We typically define this “frequentist" probability in terms of more digestible, atomic
axioms, known as the Kolmogorov axioms:

1. 0 ≤ 𝑃(ℰ) ≤ 1

2. 𝑃(Ω) = 1

3. 𝑃
(⋃∞

𝑖=1 ℰ𝑖

)
=

∑∞
𝑖=1 𝑃(ℰ𝑖) where each ℰ𝑖 is mutually exclusive with every other.

Here we operate under the assumption that 𝑃(ℰ) is defined for all ℰ, which is only true
for measurable sets. We do not cover a measure-theoretic approach to probability here.
There are several corrolaries to the above, the most important being 𝑃(ℰ𝑐) = 1 − 𝑃(ℰ),
and if ℰ ⊂ ℱ then 𝑃(ℰ) ≤ 𝑃(ℱ ).

In particular, we note axiom (3), which is true only when the ℰ𝑖 are mutually exclusive.
In the event that they are not, we have a looser inequality.
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Probability Conditional Probability and Independence

Generalized inclusion-exclusion

Property (3) does not generally hold when mutual exclusivity is violated. Instead,
we have Boole’s Inequality:

𝑃

( ∞⋃
𝑖=1

ℰ𝑖

)
≤

∞∑
𝑖=1

𝑃(ℰ𝑖).

In particular, 𝑃(ℰ1 ∪ ℰ2) = 𝑃(ℰ1) + 𝑃(ℰ2) − 𝑃(ℰ1ℰ2). This is because for two
events, we “double count" their intersection. For three events, removing the
pairwise intersection “overcorrects" for the intersection of all three events, so
𝑃(ℰ1∪ℰ2∪ℰ3) = 𝑃(ℰ1)+𝑃(ℰ2)+𝑃(ℰ3)−𝑃(ℰ1ℰ2)−𝑃(ℰ2ℰ3)−𝑃(ℰ1ℰ3)+𝑃(ℰ1ℰ2ℰ3):

𝑃

(
𝑛⋃
𝑖=1

ℰ𝑖

)
=

𝑛∑
𝑘=1

(−1)𝑘+1 ©­«
∑

1≤𝑖1<···<𝑖𝑘≤𝑛
𝑃

©­«
𝑘⋂
𝑗=1

ℰ𝑖 𝑗
ª®¬ª®¬ .

In some cases, it is safe to assume all events are equally likely. Then finding the
probability is as simple as counting the size of ℰ and dividing by the size of Ω. As an
example, suppose we want to find the number of ways we can deal a full house from a
deck of cards. There are

(52
5
)

possible hands in a deck. There are
(4
2
)

ways to choose two
cards of the same rank, of 13 ranks to choose from. Then there are

(4
3
)

ways to choose
three cards of the same rank for each of the remaining 12 ranks. So the total number of
ways to deal a full house is (12 · 13

(4
2
) (4

3
)
)/

(52
5
)
.

What we have discussed so far is a frequentist view of probability, wherein we model
probability as the outcome of a series of repeatable experiments. This is not always
possible – for example, the probability that a stock will go up or down based on the
current market is not a repeatable task. These kinds of problems require a framing
wherein probability represents a measure of belief in a particular outcome versus a
measurement of an experiment. This is the foundation for the Bayesian interpretation.

※ Conditional Probability and Independence

Here we discuss the idea that the probability of an experiment changes when we have
partial information available. For example, consider the probability that the sum of two
die is 8, given that one of them is 3. There are 36 possible die rolls we can have – but
because of the partial information we are given, the probability of 30 of those outcomes
(where the first die isn’t 3) is 0. Of the remaining 6 options, exactly one satisfies our
condition, so the probability is 1/6.

In this way we can think of these conditional probabilities as restrictions of the sample
space. Suppose we are given an event ℱ . For ℰ to occur, it needs to be in ℰ ∩ ℱ .
Additionally, since ℱ has occurred, our potential sample space is restricted to ℱ . So
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Probability 3.1 Bayes’ Theorem

our conditional probability is

𝑃(ℰ|ℱ ) = 𝑃(ℰ ∩ ℱ )
𝑃(ℱ ) ⇐⇒ 𝑃(ℰℱ ) = 𝑃(ℰ|ℱ )𝑃(ℱ )

The latter formulation generalizes to the multiplication rule:

𝑃

(
𝑛⋂
𝑖=1

ℰ𝑖

)
= 𝑃(ℰ1)𝑃(ℰ2 |ℰ1)(ℰ3 |ℰ1ℰ2)... =

𝑛∏
𝑖=1

𝑃
©­«ℰ𝑖

������ 𝑖−1⋂
𝑗=1

ℰ 𝑗
ª®¬

As an illustration, let’s find the probability that a dealing of 52 cards into 13 hands has
exactly one ace in each hand. This is the intersection four events:

ℰ1 The ace of spaces is in a pile.

ℰ2 The ace of spades and ace of hearts are in different piles.

ℰ3 Spades, hearts, and diamonds are in different piles.

ℰ4 All four cards are in different piles.

Trivially 𝑃(ℰ1) = 1. Then there are 51 cards left to choose from, of which 12 must go to
the ace-of-spades hand (that do not include the ace of hearts). So 𝑃(ℰ2 |ℰ1) is the number
of possible spots for the ace of hearts, which is (51 − 13)/50 = 39/51. Then there are 26
spots left for the ace of diamonds where it would be in a different hand, of 50 remaining
spots to choose from – so 𝑃(ℰ3 |ℰ2ℰ1) = 26/50. Likewise 𝑃(ℰ4 |ℰ3ℰ2ℰ1) = 13/49. So the
end result is the product of these four probabilities, which is roughly 0.105. Note that
conditional probabilities still satisfy all the Kolmogorov axioms, meaning conditional
distributions are valid probability distributions themselves.

3.1 Bayes’ Theorem

The above ideas give rise to a very powerful notion – since ℰ = (ℰ ∩ ℱ ) ∪ (ℰ ∩ ℱ 𝐶),
and 𝑃(ℰ ∩ ℱ ) = 𝑃(ℰ|ℱ )𝑃(ℱ ), we may be able to determine the probability of an event
by “conditioning" using another – so that if we can’t measure ℰ exactly, we can use its
interactions with ℱ to determine 𝑃(ℰ).

𝑃(ℰ) = 𝑃(ℰ|ℱ )𝑃(ℱ ) + 𝑃(ℰ|ℱ 𝐶)(1 − 𝑃(ℱ ))

As an example, suppose a certain medical diagnostic test correctly identifies the presence
of a disease 95% of the time when the patient actually has the disease (this is the true
positive rate). When the patent does not have the disease, the test correctly returns
negative 99% of the time (the true negative rate). Note this also means that in the first
case, the test is wrong 5% of the time (false negative) and in the second, it is wrong 1%
of the time (false positive). If the disease actually presents in 0.5% of the population,
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Probability 3.2 Independence

we can use the above to determine the probability that a patient has the disease given
the test returns positive.

We are looking for 𝑃(𝐷 |+) where 𝐷 is the event that the patient has the disease, and +
is the event of a positive test result. So:

𝑃(𝐷 |+) = 𝑃(𝐷 ∩ +)
𝑃(+) =

𝑃(𝐷 ∩ +)
𝑃(+|𝐷)𝑃(𝐷) + 𝑃(+|𝐷𝐶)𝑃(𝐷𝐶)

=
0.95 × 0.005

0.95 × 0.005 + 0.01 × 0.995 = 0.32

Surprisingly, if you have a positive result on the test, you only have a 32% chance of
actually having the disease!

The central idea here is that we have a certain hypothesis that we are trying to defend,
whose true probability is unknown. Accruing evidence can help either increase or de-
crease the probability that the hypothesis is true. The evidence supports our hypothesis
whenever 𝑃(ℋ |ℰ) ≥ 𝑃(ℋ). This happens whenever 𝑃(ℰ|ℋ) ≥ 𝑃(ℰ|ℋ𝐶). Equivalently,
the odds of the hypothesis are being true 𝑃(ℰ|ℋ)

𝑃(ℰ|ℋ𝐶 ) are greater than one. This means that
our evidence supports the hypothesis whenever the evidence is made more probable
when the hypothesis is true versus when it is false.

Bayes’ Theorem

Let ℋ be our hypothesis. Suppose we are given some evidence ℰ and want to
calculate how our current (or prior) estimate of 𝑃(ℋ) is changed by knowing ℰ
(the posterior 𝑃(ℋ |ℰ)). We calculate the posterior distribution by multiplying
prior by the likelihood that the hypothesis explains the evidence 𝑃(ℰ|ℋ) and
dividing by the marginal probability of ℰ, 𝑃(ℰ).

𝑃(ℋ |ℰ) = 𝑃(ℰ|ℋ)𝑃(ℋ)
𝑃(ℰ)

3.2 Independence

Having information about a second event doesn’t necessarily mean the probability of
the first event changes. In the case where 𝑃(ℰ|ℱ ) = 𝑃(ℰ) we say that ℰ and ℱ are
independent. This has the further implication that 𝑃(ℰ ∩ ℱ ) = 𝑃(ℰ)𝑃(ℱ ).

※ Random Variables

Often times we are not explicitly concerned with the direct outcome of an experiment,
but rather with some real-valued function of the output. For example, many games will
depend on the value of the sum of a roll of two die, regardless of what the actual events
are. A function which maps events in the output space to real numbers, 𝑋 : Ω ↦→ R, is
known as a random variable. Just as we can assign a probability to the events in Ω, we
can equivalently assign probabilities to the values that a random variable can assume.
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Probability 4.1 Discrete Random Variables

For a random variable 𝑋, the function 𝐹 defined by 𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) is known as
the cumulative distribution function (CDF) of 𝑋. Due to the fact that probability
distributions are strictly positive, 𝐹(𝑥) is a strictly increasing function.

4.1 Discrete Random Variables

If a random variable 𝑋 can take on a finite number of values, it is called a discrete
random variable. We can define a function 𝑝 whose domain is the set of values 𝑋 can
assume. This function, 𝑝(𝑎) = 𝑃(𝑋 = 𝑎) is known as the probability mass function. It
has the property that 𝑝(𝑥𝑖) ≥ 0 if 𝑋 can possibly be 𝑥𝑖 , and 0 otherwise. Additionally,∑

𝑥𝑖
𝑝(𝑥𝑖) = 1 (this is so that we adhere to the Kolmogorov axioms). We then write the

cumulative distribution as
𝐹(𝑎) =

∑
𝑥≤𝑎

𝑝(𝑥).

For discrete random variables, 𝐹(𝑎) looks like a step function when plotted.

4.2 First and Second Moments

Often times it is sufficient to ignore the overall probability distribution (mass function) if
we have access to certain values which concisely summarize the information represented
by that distribution. One such measure is the expected value or expectation.

Expected Value

For 𝑋 distributed according to 𝑝(𝑋), the expected value is

E[𝑋] =
∑

𝑥:𝑝(𝑥)>0

𝑥𝑝(𝑥).

The expectation is a weighted average of the possible values of 𝑋, where the weights
are the probabilities of each value. In a frequentist setting, this can be thought of the
average outcome per trial if the experiment is repeated infinitely. Expected value is an
analogous concept to the center of gravity of an object, i.e. the point in an object about
which all torques sum to zero.

Indicator Random Variables

A random variable 1𝐴 is an indicator of event 𝐴 if

1𝐴 =


1 𝐴

0 𝐴𝐶

As a result E[1𝐴] = 𝑝(𝐴).
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Probability 4.3 Bernoulli and Binomial

We can also think of the expected value of a function of a random variable, 𝑔(𝑋). The
expectation E[𝑔(𝑋)] can be thought of as a weighted average of the values of 𝑔(𝑋),
weighted by the probabilities of 𝑋, meaning

E[𝑔(𝑋)] =
∑

𝑥:𝑝(𝑥)>0

𝑔(𝑥)𝑝(𝑥).

This has the consequence that for 𝑔(𝑋) = 𝑎𝑋+𝑏, we haveE[𝑎𝑋+𝑏] = 𝑎E[𝑋]+𝑏 (linearity
of expectation).

The quantity E[𝑋] is also referred to as the first moment of 𝑋. The quantities E[𝑋𝑛]
are the nth moments of 𝑋. Moments are quantities that capture some essential quality
about the shape of a function, in this case the “center."

The expected value gives us limited information. It tells us the central value for the
random variable, but does not give us any information on how the random variable
behaves at locations other than the mean. For that, we try to measure how much the
function varies, which we can think of as determining the distance (more typically, the
squared Euclidean distance) 𝑋 typically is from its mean:

E[(𝑋 − 𝜇)2] =
∑
𝑥

(𝑥 − 𝜇)2𝑝(𝑥)

=
∑
𝑥

𝑥2𝑝(𝑥) − 2𝜇
∑
𝑥

𝑥𝑝(𝑥) + 𝜇2
∑
𝑥

𝑝(𝑥)

= E[𝑋2] − E[𝑋]2.

This quantity is the variance of 𝑋, written Var(𝑋), with the property that Var(𝑎𝑋 + 𝑏) =
𝑎2Var(𝑋). Variance is also the (mean-adjusted) second moment, known in physics
as the moment of inertia. We sometimes instead use the square root of variance,
𝜎(𝑋) =

√
Var(𝑋), known as the standard deviation.

4.3 Bernoulli and Binomial

A random variable that outputs 1 with probability 𝑝 and 0 with probability (1 − 𝑝) is
known as a Bernoulli random variable. If we repeat 𝑛 Bernoulli experiments, the total
number of successes is a binomial random variable 𝑋 ∼ 𝐵𝑖𝑛𝑜𝑚(𝑛, 𝑝). The probability
mass function is the probability of getting 𝑖 successes of 𝑛 trials. The probability of
exactly 𝑖 successes and 𝑛 − 𝑖 failures is 𝑝 𝑖(1− 𝑝)𝑛−𝑖 , and there are

(𝑛
𝑖

)
ways to arrange the

successes and failures.
𝑝(𝑖) =

(
𝑛

𝑖

)
𝑝 𝑖(1 − 𝑝)𝑛−𝑖 .

We can also calculate the moments of 𝑋.

E[𝑋 𝑘] =
∑

𝑥𝑘𝑝(𝑥) =
∑

𝑖𝑘
(
𝑛

𝑖

)
𝑝 𝑖(1 − 𝑝)𝑛−𝑖 = 𝑛𝑝

∑
(𝑗 + 1)𝑘−1

(
𝑛 − 1
𝑗

)
𝑝 𝑗(1 − 𝑝)𝑛−𝑗−1

11



Probability 4.4 Poisson

where 𝑗 = 𝑖 − 1 and we take advantage of the fact that 𝑖
(𝑛
𝑖

)
= 𝑛

(𝑛−1
𝑖−1

)
. Then E[𝑋 𝑘] =

𝑛𝑝E[(𝑌 + 1)𝑘−1] where 𝑌 ∼ 𝐵𝑖𝑛𝑜𝑚(𝑛 − 1, 𝑝). Plugging in 𝑘 = 1 gives us E[𝑋] = 𝑛𝑝, and
plugging in 𝑘 = 2 gives us E[𝑋2] = 𝑛𝑝(𝑛 − 1)𝑝 + 1, meaning Var(𝑋) = E[𝑋2] − E[𝑋]2 =

𝑛𝑝(1 − 𝑝).

4.4 Poisson

The binomial mass function can become infeasible compute when 𝑛 is extremely large
or 𝑝 is extremely small. In these cases – where 𝑛𝑝 is “medium sized," we might try to
approximate the result. Letting 𝜆 = 𝑛𝑝 :

𝑝(𝑖) =
(
𝑛

𝑖

)
𝑝 𝑖(1 − 𝑝)𝑛−𝑖

=
𝑛!

(𝑛 − 1)!𝑖!𝑝
𝑖(1 − 𝑝)𝑛−𝑖

=
𝑛(𝑛 − 1) · · · (𝑛 − 𝑖 + 1)

𝑖!
𝜆𝑖

𝑛 𝑖

(
1 − 𝜆

𝑛

)𝑛−𝑖
=

𝑛(𝑛 − 1) · · · (𝑛 − 𝑖 + 1)
𝑛 𝑖

𝜆𝑖

𝑖!
(1 − 𝜆/𝑛)𝑛
(1 − 𝜆/𝑛)𝑖

≃ 𝑒−𝜆
𝜆𝑖

𝑖! .

The final approximation comes from the fact that, for large 𝑛 and 𝑖 ≪ 𝑛, 𝑛(𝑛−1)···(𝑛−𝑖+1)
𝑛 𝑖 ≃ 1

and (1−𝜆/𝑛)𝑖 ≃ 1. Also, for 𝜆 sufficiently greater than zero (1−𝜆/𝑛)𝑛 ≃ 𝑒−𝜆. This is the
probability mass function for the Poisson distribution with parameter 𝜆, 𝑋 ∼ 𝑃𝑜𝑖𝑠(𝜆).
Since 𝜆 = 𝑛𝑝 and E[𝑌 ∼ 𝐵𝑖𝑛𝑜𝑚(𝑛, 𝑝)] = 𝑛𝑝, we might anticipate that E[𝑋] = 𝜆, and
likewise that Var(𝑋) = Var(𝑌) = 𝑛𝑝(1 − 𝑝) ≈ 𝑛𝑝 = 𝜆 for small 𝑝. In general, the Poisson
distribution appears when a large number of experiments occur where the probability
of each of those events is small, and the experiments are either fully independent or
only have “weak" dependence, i.e. 𝑃(𝐸𝑖 |𝐸 𝑗) ≃ 𝑃(𝐸𝑖) for large 𝑛.

4.5 Other Discrete Distributions

1. Suppose an experiment succeeds with probability 𝑝 and fails with probability 1−𝑝

Then the random variable 𝑋 describing the iteration in which the first success
happens is a geometric random variable 𝑋 ∼ 𝐺𝑒𝑜𝑚(𝑝) with 𝑝(𝑛) = (1 − 𝑝)𝑛−1𝑝. If
we let 𝑞 = 1 − 𝑝 then

E[𝑋] =
∞∑
𝑛=1

𝑛(1 − 𝑝)𝑛−1𝑝 = 𝑝
∑ 𝑑

𝑑𝑞
𝑞𝑛 = 𝑝

𝑑

𝑑𝑞

∑
𝑞𝑛 = 𝑝

𝑑

𝑑𝑞

(
1

1 − 𝑞

)
=

1
𝑝
.

The variance is then (1 − 𝑝)/𝑝2.

2. Suppose an experiment that succeeds with probability 𝑝 is performed until 𝑟

experiments succeed. The random variable 𝑋 describing the total number of

12



Probability Continuous Random Variables

trials required is a negative binomial random variable with parameters (𝑝, 𝑟),
𝑋 ∼ 𝑁𝐵(𝑝, 𝑟).

𝑝(𝑛) =
(
𝑛 − 1
𝑟 − 1

)
𝑝𝑟(1 − 𝑝)𝑛−𝑟 , 𝑛 ≥ 𝑟.

Its mean and variance are E[𝑋] = 𝑟𝑝/(1 − 𝑝) and Var(𝑋) = 𝑟𝑝/(1 − 𝑝)2; we can
think of the negative binomial as 𝑟 independent geometric random variables.

3. Suppose we select 𝑛 objects from a collection of size 𝑁 , of which 𝑚 belong to a
category and 𝑁 − 𝑚 belong to another. The number of objects in our selection
belonging to the first class represents a hypergeometric random variable,

𝑝(𝑖) =
(𝑚
𝑖

) (𝑁−𝑚
𝑛−𝑖

)(𝑁
𝑛

) , 𝑖 ≤ 𝑚.

Its mean is 𝑛𝑚/𝑁 and its variance is 𝑛𝑝(1 − 𝑝)
(
1 − 𝑛−1

𝑁−1
)
.

4. A random variable with the probability mass function

𝑝(𝑘) 𝐶

𝑘𝛼+1

where 𝛼 > 0 and 𝐶 is a normalizing coefficient is known as the zeta or Zipf
distribution. It receives its name from its relationship to the Riemann zeta function
𝜁(𝑠) = ∑ ( 1

𝑛

) 𝑠 .
※ Continuous Random Variables

A random variable 𝑋 that can take on an uncountably infinite set of values are known
as continuous random variables if there exists a nonnegative function 𝑓 over R such
that, for any measurable set 𝐵 ⊂ R, 𝑃[𝑋 ∈ 𝐵] =

∫
𝐵
𝑓 (𝑥)𝑑𝑥. 𝑓 is the probability density

function of 𝑋. As in the discrete case, the
∫
R
𝑓 (𝑥)𝑑𝑥 = 1. It doesn’t make sense to query

a single point in a continuous distribution, as any point has probability zero. Instead, we
query an interval [𝑎, 𝑏]whose probability is then

∫ 𝑏

𝑎
𝑓 (𝑥)𝑑𝑥. The cumulative distribution

function for a continuous random variable is simply 𝐹(𝑎) =
∫ 𝑎

−∞ 𝑓 (𝑥)𝑑𝑥, meaning 𝐹′(𝑎) =
𝑓 (𝑎). For continuous random variables, the expectation is E[𝑋] =

∫
R
𝑥 𝑓 (𝑥)𝑑𝑥, and the

variance is defined similarly. As in the discrete case, E[𝑔(𝑋)] =
∫
R
𝑔(𝑥) 𝑓 (𝑥)𝑑𝑥. Also like

the discrete case, E[𝑎𝑋 + 𝑏] = 𝑎E[𝑋] + 𝑏, and Var(𝑎𝑋 + 𝑏) = 𝑎2Var(𝑋).

A random variable is said to be uniformly distributed over [0, 1] if 𝑓 (𝑥) = 1 for 0 < 𝑥 < 1
and 𝑓 (𝑥) = 0 otherwise. More generally, a random variable is uniform over [𝑎, 𝑏] if its
density function is 𝑓 (𝑥) = 1

𝑏−𝑎 for 𝑥 ∈ [𝑎, 𝑏] and zero otherwise. The uniform random
variable has mean 𝑏−𝑎

2 and variance (𝑏−𝑎)2
12 .
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Probability 5.1 The Gaussian Distribution

5.1 The Gaussian Distribution

A random variable 𝑋 is normal or Gaussian with mean 𝜇 and variance 𝜎2 if the density
function of 𝑋 is

𝑝(𝑥) = 1√
2𝜋𝜎2

exp
{
−1

2

( 𝑥 − 𝜇

𝜎

)2
}
.

The density function is a bell-shaped symmetric curve about 𝜇, and was formulated
as a way to approximate the binomial for large 𝑛. The normal distribution appears
frequently in the natural world due to the central limit theorem (later in the text), and is
one of the most essential distributions in many sciences.

It is traditional to denote the cumulative distribution function of a standard normal
(zero-mean, unit-variance) Gaussian with Φ, as

Φ(𝑥) = 1√
2𝜋

∫ 𝑥

−∞
exp

{
−
𝑦2

2

}
One of the most critical results in probability theory is the idea that when 𝑛 is large,
the binomial distribution with parameters 𝑛 and 𝑝 will have approximately the same
distribution as a Gaussian distribution with the same mean and variance.

The DeMoivre-Laplace Limit Theorem

If 𝑆𝑛 is the number of successes for 𝑛 independent trials, succeeding with proba-
bility 𝑝, then for 𝑎 < 𝑏:

lim
𝑛→∞

𝑃

{
𝑎 ≤ 𝑆𝑛 − 𝑛𝑝√

𝑛𝑝(1 − 𝑝)
≤ 𝑏

}
= Φ(𝑏) −Φ(𝑎).

5.2 Other Continuous Distributions

Here is a short list of other vital continuous distributions that often appear in the
sciences.

1. A continuous random variable with density function (with parameter 𝜆) 𝜆𝑒−𝜆𝑥

for 𝑥 ≥ 0 and 0 otherwise is an exponential random variable 𝑋 ∼ 𝐸𝑥𝑝𝑜(𝜆). It
has mean 1/𝜆 and variance 1/𝜆2. It is typically used with respect to arrival times;
while the Poisson distribution can be used to model the number of (rare) events
occurring in a time frame, the exponential distribution models the amount of time
until the next occurrence. The exponential distribution is memoryless, meaning
that the probability of an event occurring in the next 𝑡 time is consistent no matter
what the current time is.

2. The Gamma distribution, 𝑋 ∼ Γ(𝛼,𝜆) has density function (for nonnegative 𝑥)

𝑓 (𝑥) = 𝜆𝑒−𝜆𝑥(𝜆𝑥)𝛼−1

Γ(𝛼) .

14



Probability Jointly Distributed Random Variables

The Gamma distribution represents the wait time until the 𝛼th event occurs; the
exponential distribution is a special case of the Gamma distribution when 𝛼 = 1.
In literature, if we restrict 𝛼 to positive integers, we may alternatively call the
distribution the 𝑛-Erlang distribution.

3. A Weibull random variable, 𝑋 ∼ 𝑊𝑒𝑖𝑏(𝛼, 𝛽, 𝜈), is one whose cumulative density
function (for 𝑥 > 𝜈) is

1 − exp
{
−

( 𝑥 − 𝜈
𝛼

)𝛽}
.

This distribution is prominently used in reliability engineering, in the process of
predicting the probability of a system failure.

4. The Cauchy distribution, 𝑋 ∼ 𝐶𝑎𝑢𝑐ℎ𝑦(𝜃), also known as the Lorentz or Cauchy-
Lorentz distribution, is a well-known distribution in physics describing resonance
patterns, and is given by the density function

𝑓 (𝑥) = 1
𝜋

1
1 + (𝑥 − 𝜃)2 .

It can be thought of as the location where a beam of light shone from (0, 1) hits the
𝑥-axis, assuming that beam makes an angle 𝜃 with the 𝑦-axis.

5. A random variable has a Beta distribution if its density, for 0 < 𝑥 < 1, is

𝑓 (𝑥) = 1
𝐵(𝑎, 𝑏)𝑥

𝑎−1(1 − 𝑥)𝑏−1 ,

where 𝐵 is the Beta function∫ 1

0
𝑥𝑎−1(1 − 𝑥)𝑏−1𝑑𝑥 =

Γ(𝑎)Γ(𝑏)
Γ(𝑎 + 𝑏) .

The Beta distribution is useful in modeling the probability distribution of a probabil-
ity. One good example (not my own): suppose a baseball batter bats exceptionally
poorly their first three games of the season. We might give them a batting average
of 0. But we know this is nonsensical, since the average batting average is around
0.25. So it’s far more likely that their batting average is actually just a bit below 0.25,
not all the way down at 0. The Beta distribution helps model this prior knowledge.

※ Jointly Distributed Random Variables

The discussion so far concerns distributions of single random variables. However, we
are often curious about the probabilities associated with multiple random variables at
once. In the case of two events, the joint cumulative distribution function is

𝐹(𝑎, 𝑏) = 𝑃(𝑋 ≤ 𝑎, 𝑌 ≤ 𝑏).

15



Probability 6.1 Independent Random Variables

The individual distributions of 𝑋 and 𝑌, 𝐹𝑋(𝑎) = 𝐹(𝑎,∞) and 𝐹𝑌(𝑏) = 𝐹(∞, 𝑏), are
known as marginal distributions. For discrete distributions, the joint mass function is
𝑝(𝑥, 𝑦) = 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦), where the individual marginal probabilities can be retrieved
by summing over the other variable, i.e.

𝑝𝑋(𝑥) =
∑
𝑦

𝑃(𝑋 = 𝑥, 𝑌 = 𝑦).

We call 𝑋 and𝑌 jointly continuous if there is some 𝑓 (𝑥, 𝑦) : R2 ↦→ [0, 1] (a joint density
function) such that, for all subsets 𝒞 ⊂ R2,

𝑃((𝑋,𝑌) ∈ 𝒞) =
∬

(𝑥,𝑦)∈𝒞
𝑓 (𝑥, 𝑦)𝑑𝑥𝑑𝑦.

As in the discrete case, we can marginalize the distribution, this time with integration,
as in

𝑓𝑋(𝑥) =
∫
R
𝑓 (𝑥, 𝑦)𝑑𝑦.

These definitions naturally extend to 𝑛 random variables (beyond just the two we use
for illustration). As an example of the above concepts, suppose we are trying to find the
distribution of some continuous random variable 𝑋/𝑌, given 𝑓 (𝑥, 𝑦). We can set up the
appropriate integral using the definition of the joint cumulative distribution function,
and then differentiate to find the density:

𝐹𝑋/𝑌(𝑎) = 𝑃(𝑋/𝑌 ≤ 𝑎) =
∬

𝑥/𝑦≤𝑎
𝑓 (𝑥, 𝑦)𝑑𝑥𝑑𝑦 =

∫ ∞

0

∫ 𝑎𝑦

0
𝑓 (𝑥, 𝑦)𝑑𝑥𝑑𝑦 →

𝑓𝑋/𝑌(𝑎) =
𝑑

𝑑𝑎

∫ ∞

0

∫ 𝑎𝑦

0
𝑓 (𝑥, 𝑦)𝑑𝑥𝑑𝑦.

6.1 Independent Random Variables

𝑋 and 𝑌 are independent if for any sets of numbers 𝒜 and ℬ,

𝑃(𝑋 ∈ 𝒜 , 𝑌 ∈ ℬ) = 𝑃(𝑋 ∈ 𝒜)𝑃(𝑌 ∈ ℬ).

As such, a necessary and sufficient condition for independence is that the joint proba-
bility density/mass function 𝑓 (𝑥, 𝑦) cleanly factors into exactly two terms, one of which
is exclusively dependent on 𝑥 and the other exclusively dependent on 𝑦, i.e. 𝑓 (𝑥, 𝑦) =
ℎ(𝑥)𝑔(𝑦). Independence is a symmetric relation, meaning that 𝑋 ⊥⊥ 𝑌 ⇐⇒ 𝑌 ⊥⊥ 𝑋.

Suppose we wish find the distribution of a sum of independent random variables, 𝑋+𝑌.
Then we could use the same method as we did above to find

𝐹𝑋+𝑌(𝑎) = 𝑃(𝑋 + 𝑌 ≤ 𝑎) =
∬

𝑥+𝑦≤𝑎
𝑓 (𝑥, 𝑦)𝑑𝑥𝑑𝑦

=

∫ ∞

−∞

∫ 𝑎−𝑦

−∞
𝑓𝑋(𝑥) 𝑓𝑌(𝑦)𝑑𝑥𝑑𝑦 =

∫
R
𝐹𝑋(𝑎 − 𝑦) 𝑓𝑌(𝑦)𝑑𝑦.
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Probability 6.2 Conditional Distributions

This is called performing a convolution on the cumulative distribution functions 𝐹𝑋

and 𝐹𝑌 . In general, adding two independent random variables amounts to performing
a convolution on their cumulative distribution functions and differentiating the result.
The sum of uniform distributions is not uniform, but the sum of normal distributions
is, with mean 𝜇𝑋 + 𝜇𝑌 and variance 𝜎2

𝑋
+ 𝜎2

𝑌
. We omit the other various distributions.

6.2 Conditional Distributions

If 𝑋 and 𝑌 are discrete random variables, the conditional probability mass function is

𝑝𝑋 |𝑌(𝑥 |𝑦) = 𝑃(𝑋 = 𝑥 |𝑌 = 𝑦) =
𝑝(𝑥, 𝑦)
𝑝(𝑦) .

The conditional distribution function is then likewise

𝐹𝑋 |𝑌(𝑥 |𝑦) =
∑
𝑎≤𝑥

𝑝𝑋 |𝑌(𝑎 |𝑦).

In the continuous case, the conditional density function of 𝑥 |𝑦 is

𝑓𝑋 |𝑌(𝑥 |𝑦) =
𝑓 (𝑥, 𝑦)
𝑓𝑌(𝑦)

.

Note that we have a workable expression for the continuous case, even though the
probability of the event in question 𝑃(𝑌 = 𝑦) = 0. This idea works even if 𝑋 and 𝑌 are
not jointly continuous or jointly discrete, i.e. if 𝑋 is continuous and 𝑌 is discrete.

6.3 Order Statistics

If 𝑋1 , ..., 𝑋𝑛 are i.i.d. continuous random variables, and 𝑋(1) is the smallest among them,
𝑋(2) is the next smallest, etc., then the total partial ordering 𝑋(1) ≤ ... ≤ 𝑋(𝑛) is known as
the order statistics of the set of variables. The joint density of the order statistics can be
thought of a permutation problem – if any of the 𝑋𝑖 = 𝑥 𝑗 then we are satisfied. So the
joint density function is simply 𝑛!

∏
𝑓 (𝑥𝑖). If each 𝑋𝑖 is jointly distributed with 𝑌𝑖 , then

the corresponding ordering induced on 𝑌 by the order statistic is called a concomitant.

※ Expectation

Recall that the expectation can be thought as a weighted sum of the possible values of a
random variable, where the weights are the probabilities of those events.

Suppose that we now want to find the expectation of a function 𝑔(𝑋,𝑌) of two random
variables, 𝑋 and 𝑌, where 𝑋 and 𝑌 have a joint density 𝑓 (we omit the discrete case,
though it looks almost identical, just with sums instead of the integral).

E[𝑔(𝑋,𝑌)] =
∬
R2

𝑔(𝑥, 𝑦) 𝑓 (𝑥, 𝑦)𝑑𝑥𝑑𝑦
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Probability 7.1 The Coupon Collector’s Problem

When E[𝑋] and E[𝑌] are both finite, then using the above we get the result:

E[𝑋 + 𝑌] =
∬
R2
(𝑥 + 𝑦) 𝑓 (𝑥, 𝑦)𝑑𝑥𝑑𝑦 =

∫
R
𝑥 𝑓𝑋(𝑥)𝑑𝑥 +

∫
R
𝑦 𝑓𝑌(𝑦)𝑑𝑦 = E[𝑋] + E[𝑌].

Indeed, for any 𝑋1 , ..., 𝑋𝑛 where each 𝑋𝑖 is finite, E [∑𝑋𝑖] =
∑
E[𝑋𝑖]. This is known as

linearity of expectation, and is true regardless of whether the 𝑋𝑖 are independent.

7.1 The Coupon Collector’s Problem

This is a brief explanation of a common probability problem. Suppose a brand is doing
a promotion where every item sold contains one of 𝑁 possible types of coupons, where
each type appears with equal probability. What is the expected number of coupons that
will need to be collected before one of each type is acquired?

We can model the total number of coupons 𝑋 as the sum of 𝑋0 , ..., 𝑋𝑁−1, where 𝑋𝑖 is
the number of additional coupons that need to be obtained to get the 𝑖 + 1th unique
coupon after 𝑖 unique coupons have already been collected. The probability 𝑃(𝑋𝑖 = 𝑘) is
𝑁−𝑖
𝑁

(
𝑖
𝑁

) 𝑘−1 – probability 𝑝 = 𝑁−𝑖
𝑁 that we get the next unique coupon on the 𝑘th coupon

and 1 − 𝑝 for each of the 𝑘 − 1 coupons before it. This is a geometric random variable
with parameter 𝑝. Then since E[𝑋𝑖] = 𝑁

𝑁−𝑖 , the total expected number of coupons is

E[𝑋] = 𝑁

[
1 + . . . + 1

𝑁 − 1 + 1
𝑁

]
.

7.2 Covariance and Correlations

For independent variables 𝑋 and 𝑌, the expectation of the product of functions of 𝑋
and 𝑌 is the product of their expectations:

E[𝑔(𝑋)ℎ(𝑌)] = E[𝑔(𝑋)]E[ℎ(𝑌)].

The covariance between two random variables gives us information about the relation-
ship between those variables – namely, how much those to variables vary together. It is
defined as

Cov(𝑋,𝑌) = E[(𝑋 − E[𝑋])(𝑌 − E[𝑌])] = E[𝑋𝑌] − E[𝑋]E[𝑌].

If𝑋 and𝑌 are independent, varying𝑋 tells us nothing about varying𝑌, so Cov(𝑋,𝑌) = 0
(though the converse is not generally true – dependent variables can also have zero
covariance). The covariance of a variable with itself is its variance.

We can also think about the variance of sums of random variables. The pairwise
covariances of a set of random variables (𝑋1 , ..., 𝑋𝑛) form a covariance matrix. The
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Probability 7.3 Conditional Expectation

variance of the sum of all variables in that set is equivalent to summing over the entire
covariance matrix:

Var

(
𝑛∑
𝑖=1

𝑋𝑖

)
=

𝑛∑
𝑖=1

Var(𝑋𝑖) + 2
∑∑

𝑖< 𝑗

Cov(𝑋𝑖 , 𝑋𝑗).

Note that this explains the previous formula for the variance of a sum of independent
random variables – if they are independent, the covariances are all zero.

The correlation, 𝜌(𝑋,𝑌), of two random variables is defined (for positive Var(𝑋)Var(𝑌))
as

𝜌(𝑋,𝑌) = Cov(𝑋,𝑌)√
Var(𝑋)Var(𝑌)

.

Correlation and covariance are two quantities often confused in statistics. Intuitively,
covariance can be thought of measuring the direction of the relationship between two
random variables, but is a poor measure of the exact strength of that relationship,
because it is impacted by scale. Correlation, a scaled function of covariance, allows us to
determine the exact degree of linearity (strength of the relationship), ranging from [−1, 1].
1 indicates, for example, that there is a perfectly linear relationship 𝑌 = 𝑎𝑋 + 𝑏, 𝑎 > 0.
Note that both of these ideas only measure the linear relationship between random
variables, meaning they give little to no information in non-linear cases.

7.3 Conditional Expectation

The conditional probability for 𝑋 given 𝑌 = 𝑦 is

𝑓𝑋 |𝑌(𝑥 |𝑦) =
𝑓 (𝑥, 𝑦)
𝑓𝑌(𝑦)

.

Likewise, the conditional expectation can be defined as

E[𝑋 |𝑌 = 𝑦] =
∫
𝑥

𝑥 𝑓𝑋 |𝑌(𝑥 |𝑦)𝑑𝑦

We can think of the conditional expectation as 𝑌 = 𝑦 the equivalent of calculating the
expected value of 𝑓 (𝑥, 𝑦) with the sample space reduced to 𝑌 = 𝑦.

An important property of expectations is that E[𝑋] = E[E[𝑋 |𝑌]]. Note that E[𝑋 |𝑌] is
itself a random variable. We can show this by expanding out the E’s:

Law of Iterated Expectations

E[E[𝑋 |𝑌]] =
∫
𝑦

∫
𝑥

𝑓 (𝑥 |𝑦) 𝑓 (𝑦)𝑑𝑥𝑦 =

∫
𝑦

∫
𝑥

𝑥 𝑓 (𝑥, 𝑦)𝑑𝑥𝑑𝑦 =

∫
𝑥

𝑥 𝑓 (𝑥)𝑑𝑥 = E[𝑋].

To intuit this a bit better: to calculate E[𝑋], we may take a weighted average of E[𝑋 |𝑌]
over all possible values of 𝑌, where the weights are the probabilities of each 𝑌 = 𝑦.
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Probability 7.3 Conditional Expectation

This result lets us readily compute expected values when the target variable is difficult
to measure directly, but we have access to a conditional probability conditioned on an
event with known probability. This is known as the law of iterated expectations.

As an example, we may calculate the expected number of uniform random variables
in (0, 1) that must be drawn until their sum exceeds 1. We generalize to finding 𝑁(𝑥),
the number of uniform random variables drawn until their sum exceeds 𝑥. Let the
drawn variables be listed as𝑈1 , 𝑈2 , ... The density function of𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(0, 1) is 𝑓 (𝑥) = 1,
𝑥 ∈ (0, 1). Then the average number 𝑚(𝑥) = E[𝑁(𝑥)] is

𝑚(𝑥) =
∫ 1

0
E[𝑁(𝑥)|𝑈1 = 𝑦]𝑑𝑦.

If 𝑦 > 𝑥 then 𝑚(𝑥) is simply 1 (we are already done) – otherwise we can recursively say
that E[𝑁(𝑥)|𝑈1 = 𝑦], 𝑦 ≤ 𝑥 is 1 + 𝑚(𝑥 − 𝑦). So then our equation becomes

𝑚(𝑥) = 1 +
∫ 𝑥

0
𝑚(𝑥 − 𝑦)𝑑𝑦 = 1 +

∫ 𝑥

0
𝑚(𝑢)𝑑𝑢. =⇒ 𝑚′(𝑥) = 𝑚(𝑥)

where in the last step we differentiate both sides. Then solving the resulting homogenous
differential equation reveals that 𝑚(𝑥) = 𝑘𝑒𝑥 , where 𝑘 = 1 since 𝑚(0) = 1. Then 𝑚(1)
is the number of uniform random variables required for their sum to exceed 1, and is
𝑚(1) = 1𝑒1 = 𝑒.

We can also calculate conditional variance in the same way:

Var(𝑋 |𝑌) = E[(𝑋 − E[𝑋 |𝑌])2 |𝑌].

And just as we can compute the expectation E[𝑋] from conditional expectations, we can
calculate the conditional variance from conditional variances:

Var(𝑋) = E[Var(𝑋 |𝑌)] + Var(E[𝑋 |𝑌]).

Finally, consider a case where we try to estimate 𝑌 by some function 𝑔(𝑋), so that when
we observe 𝑋 = 𝑥 we predict that 𝑌 ≃ 𝑔(𝑥). This is a problem that appears frequently
in statistics, optimization theory, and computer science. Ideally, 𝑔(𝑋) is close to 𝑌. In
fact, the best estimator is provably 𝑔(𝑥) = E[𝑋 |𝑌], or

E[(𝑌 − 𝑔(𝑋))2] ≥ E[(𝑌 − E[𝑌 |𝑋])2].

Instead of a rigorous proof, here’s an intuitive example – the quantity E[(𝑌 − 𝑐)2] is
minimized by 𝑐 = E[𝑌]. If we want to predict 𝑌 when we have no way of directly
measuring 𝑌, the value that will minimize the mean-squared error is E[𝑌]. In this
case, where we have access to 𝑋 = 𝑥, our best estimator is still E[𝑌], but just with the
additional information present that 𝑋 = 𝑥, hence E[𝑌 |𝑋 = 𝑥] is our best guess.
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Probability 7.4 Moment Generating Functions

7.4 Moment Generating Functions

Consider the function 𝑀(𝑥) = E[𝑒 𝑡𝑋]. If we take the 𝑛th derivative of this function and
let 𝑡 = 0, we get:

𝑑𝑛E[𝑒 𝑡𝑋]
𝑑𝑡𝑛

����
𝑡=0

= E

[
𝑑𝑛𝑒 𝑡𝑋

𝑑𝑡𝑛

����
𝑡=0

]
= E[𝑋𝑛𝑒0𝑋] = E[𝑋𝑛].

These values are, as previously introduced, the moments of 𝑋, and so we call 𝑀(𝑥)
a moment-generating function. In the above we exchange the expectation with the
derivative; note that this is not generally possible, but it is for all distributions in this
text. For more information, refer to my notes on measure theory for a discussion on
the dominated convergence theorem. An important property of the moment generating
functions is that the MGF of a sum of random variables is the product of the individual
MGFs of each random variable in the sum.

We may also define the joint MGF of multiple random variables:

𝑀(𝑡1 , ..., 𝑡𝑛) = E[𝑒 𝑡1𝑋1+...+𝑡𝑛𝑋𝑛 ].

The joint moment generating function uniquely determines the joint distribution for the
collection 𝑋1 , ..., 𝑋𝑛 ; the proof of this fact can again be found in a measure-theoretic
reference for probability theory.

※ Limit Theorems

Probabilistic limit theorems fall under two main categories – laws of large numbers (limits
concerning a sequence of random variables exhibiting some convergence property) or
central limit theorems (limits concerning the behavior of a sum of a large number of
random variables).

8.1 Weak Law of Large Numbers

Let us begin by considering a simple inequality, concerning bounding the probability
𝑃(𝑋 ≥ 𝑎) for 𝑋 ≥ 0. Let 𝐼 = 1𝑋≥𝑎 . Since 𝑋/𝑎 ≥ 𝐼 for all values of 𝑋, We must have
𝑃(𝑋 ≥ 𝑎) = E[𝐼] ≤ E[𝑋]/𝑎:

Markov’s Inequality

𝑃(𝑋 ≥ 𝑎) ≤ E[𝑋]
𝑎

As a corollary, we may evaluate the bound for𝑃(|𝑋−𝜇| ≥ 𝑘) (or equivalently, 𝑃((𝑋−𝜇)2 ≥
𝑘2)) to analyze the same bound for a zero-mean random variable:
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Probability 8.2 Central Limit Theorem

Chebyshev’s Inequality

𝑃(|𝑋 − 𝜇| ≥ 𝑘) ≤ Var(𝑋)
𝑘2

We can take this one step further by considering a sequence of i.i.d. random variables
𝑋1 , ..., 𝑋𝑛 . We might consider what the behavior of the mean of this sequence might
be as 𝑛 gets large. Since 1

𝑛E[
∑

𝑋𝑖] = 𝜇 and Var
(∑

𝑋𝑖

𝑛

)
= 1

𝑛 𝜎
2, we can use Chebyshev’s

inequality to show that

𝑃

(����∑𝑋𝑖

𝑛
− 𝜇

���� ≥ 𝜀

)
≤ 𝜎2

𝑛𝜀2

Weak Law of Large Numbers (Khinchin’s Law)

lim
𝑛→∞

𝑃

(����∑𝑋𝑖

𝑛
− 𝜇

���� ≥ 𝜀

)
= 0.

As 𝑛 grows large, the mean of a sample of 𝑛 random variables grows infinitely
close to the theoretical expected value with high probability.

8.2 Central Limit Theorem

Central Limit Theorem

Let 𝑋1 , ..., 𝑋𝑛 be a sequence of i.i.d. random variables, with shared mean 𝜇 and
variance 𝜎2. Then the distribution of 1

𝜎
√
𝑛
(∑𝑖(𝑋𝑖 − 𝜇)) is approximately standard-

normal in large 𝑛. That is:

lim
𝑛→∞

𝑃

(
𝑋1 + ... + 𝑋𝑛 − 𝑛𝜇

𝜎
√
𝑛

)
=

1√
2𝜋

∫ 𝑎

−∞
𝑒−𝑥

2/2𝑑𝑥.

8.3 Strong Law of Large Numbers (Kolmogorov’s Law)

The strong law of large numbers states that a sequence of independent random variables
with common distribution will converge to its mean with probability 1.

Strong Law of Large Numbers

If 𝑋1 , 𝑋2 , ... is a sequence of i.i.d. random variables, each with finite mean 𝜇, then

𝑃

(
lim
𝑛→∞

𝑋1 + ... + 𝑋𝑛

𝑛
= 𝜇

)
= 1.

Although the two formulations look similar, the WLLN makes a looser assertion than
the SLLN. The weak law asserts that, as the number of samples tends to infinity, the
probability that the sample mean deviates from the true mean by any significant margin
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Probability 8.4 Chernoff Bounds

approaches zero. However, this convergence only happens in probability. We make no
assumptions about the actual events in the limit – for up to infinitely many values of 𝑛,
it may be the case that

�� 1
𝑛

∑
𝑋𝑖 − 𝜇

�� ≥ 𝜀.

The SLLN asserts that this deviation almost surely will not occur. The SLLN asserts
that the limit of sample means is equal to the true mean, meaning that the number of
“deviations" is finite. In other words, there is a 0 probability that you could take the
limit of the sample mean and find a value not equal to 𝜇. The SLLN in this way implies
the WLLN, though the other is not true. The WLLN, however, is still applicable in
scenarios where the first moment is not known, and as such relies on a weaker set of
initial assumptions.

8.4 Chernoff Bounds

Let 𝑀(𝑡) be the moment generating function for 𝑋. Then 𝑃(𝑋 ≥ 𝑎) = 𝑃(𝑒 𝑡𝑋 ≥ 𝑒 𝑡𝑎) ≤
E[𝑒 𝑡𝑋]𝑒−𝑡𝑎 by the Markov inequality. So then we have the following inequalities, referred
to as the Chernoff bounds:

Chernoff Bounds

𝑃(𝑋 ≥ 𝑎) ≤ 𝑒−𝑡𝑎𝑀(𝑡), 𝑡 > 0

𝑃(𝑋 ≤ 𝑎) ≤ 𝑒−𝑡𝑎𝑀(𝑡), 𝑡 < 0

※ Processes, Entropy

9.1 Poisson Process

Stochastic processes are among the most widely applicable mathematical objects in
probability. A stochastic process is a collection of random variables on a shared proba-
bility space, i.e. a model of a system that evolves over time that is probabilistic in nature.
A collection of random variables 𝑁(𝑡) is called a Poisson process with parameter 𝜆 if:

• The process begins at time 0 𝑁(0) = 0.

• The number of events in disjoint time intervals are independent

• The process is stationary, meaning the number of events in an interval only depends
on the length of that interval.

• 𝑃(𝑁(𝑡) = 1) = 𝜆ℎ + 𝑂(ℎ) and 𝑃(𝑁(𝑡) ≥ 2) = 𝑂(ℎ).

The random variable 𝑁(𝑡) is itself a Poisson random variable with mean 𝜆𝑡:

𝑃(𝑁(𝑡) = 𝑛) = 𝑒−𝜆𝑡
(𝜆𝑡)𝑛
𝑛! .

23



Probability 9.2 Markov Chains

Instead of looking at the number of events in an interval, we can instead create a sequence
of the times when the events occur. This is a sequence of interarrival times. For a Poisson
process with parameter 𝜆, the interarrival times are independent exponential random
variables with mean 1/𝜆.

9.2 Markov Chains

A sequence of random variables 𝑋𝑛 is a Markov chain if the probability of 𝑋𝑡 = 𝑖

transitioning to 𝑋𝑡1 = 𝑗 is a fixed value 𝑃𝑖 𝑗 regardless of all the values 𝑋𝑘 had before time 𝑡.
This is the Markov property. The probabilities 𝑃𝑖 𝑗 can be arranged into a square array
(or matrix) where the entry at 𝑖 , 𝑗 is the probability of transitioning from state 𝑖 to state
𝑗. By using a superscript, as in 𝑃

(𝑛)
𝑖 𝑗

, we can also talk about the probability that the chain
will start in state 𝑖 and end in state 𝑗 after 𝑛 steps (the 𝑛-step transition probabilities).
For Markov chains that have the property where 𝑃

(𝑛)
𝑖 𝑗

> 0 for all 𝑖 , 𝑗 (ergodicity), The

𝑃
(𝑛)
𝑖 𝑗

converge in 𝑛 to some fixed value 𝜋 𝑗 that depends only on the destination state 𝑗

(these 𝜋 𝑗 are called stationary probabilities). Intuitively, the stationary probabilities
model the fraction of time the system spends in state 𝑗 over a long period of time.

A common example of a Markov chain is the modeling of a particle as it moves along
a one-dimensional axis, where the particle will move either to the left or right with
probabilities 𝑝 and 1 − 𝑝 (the one-dimensional random walk). The random walk can
be written as a Markov chain, and the 𝑛-step transition probabilities reveal information
the position of the particle after 𝑛 steps of the walk.

9.3 Entropy

Information theory deals heavily with the notion of surprised – for any system, how
much important information do we gain as observers every time a new observation
comes in? It makes intuitive sense to tie the idea of information to probability, as
seeing a low-probability event occur gives more information than one that is inspected.
We use a logarithm to quantify this idea, since we desire a function ℎ(𝑝) such that
a high probability event carries no information (ℎ(1) = 0), information increases as
probability decreases 𝑞 > 𝑝 =⇒ ℎ(𝑝) > ℎ(𝑞), and the amount of surprise is additive
(ℎ(𝑝𝑞) = ℎ(𝑝) = ℎ(𝑞)).

Entropy

Suppose we have 𝑋 which can take on any of the values 𝑥𝑖 with corresponding
probability 𝑝(𝑥𝑖). Then the entropy of 𝑋 is

𝐻(𝑋) = −
𝑛∑
𝑖=1

𝑝(𝑥𝑖) ln 𝑝(𝑥𝑖).

We leave a more thorough discussion of entropy to a course on information theory.
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※ Simulations and Sampling

For practical applications of probability, we require systems that let us simulate sampling
from distributions when we do not have access to a natural system that yields that
distribution naturally. There are two general methods for sampling from a continuous
distribution.

• Let 𝑈 be a uniform (0, 1) random variable. Suppose our target 𝑋 has cumulative
distribution function 𝐹. Since 𝐹 : R → (0, 1), and 𝐹 is strictly monotonic hence
invertible, 𝑌 = 𝐹−1(𝑈) means 𝑌 also has cumulative distribution 𝐹. This method is
known as inverse transform sampling.

• Suppose we are able to reliably sample from some distribution 𝑔. We can then scale 𝑔

by a constant 𝑐 until 𝑐𝑔 ≥ 𝑓 everywhere (we create an envelope). Then we can sample
𝑌 from 𝑐𝑔, and then draw a number 𝑈 from 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(0, 1). If 𝑈 ≤ 𝑓 (𝑌)/𝑐𝑔(𝑌) then
we keep 𝑌 as our drawn sample; otherwise we discard 𝑌 and try again. This method
of rejecting samples that fall out of the distribution is known as rejection sampling.

Box-Muller Transform

The Box-Muller transform is a method for sampling from a normal distribution.
If 𝑈1 and 𝑈2 are independent uniform random variables on (0, 1), then

𝑍0 = 𝑅 cos(𝜃) =
√
−2 ln𝑈1 cos(2𝜋𝑈2)

𝑍1 = 𝑅 sin(𝜃) =
√
−2 ln𝑈1 sin(2𝜋𝑈2)

where 𝑅2 = −2 ln𝑈1 and 𝜃 = 2𝜋𝑈2. We omit a deep dive into the derivation for
brevity, but there are great summaries online.

There is an alternate form of the Box-Muller transform in polar form which
avoids the use of sin and cos and uses rejection sampling. This version samples
two uniform random variables 𝑢 and 𝑣 to find a radius 𝑠 = 𝑅2 = 𝑢2 + 𝑣2. We
reject 𝑠 if it falls outside of the unit circle, and keep it if it does not. We can then
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use this sampled value of 𝑠 in a similar way to the above.

All of these continuous-domain examples have natural analogs in the discrete case.

10.1 Variance Reduction

Suppose we want to estimate a value 𝜃 = E[𝑔(𝑋1 , ..., 𝑋𝑛)]. Such a value is sometimes
intractably difficult to compute. Once again simulations come to the rescue. We can
generate (𝑋(1)

1 , ..., 𝑋
(1)
𝑛 ) whose joint distribution is the same as (𝑋1 , ..., 𝑋𝑛). Then letting

𝑌1 = 𝑔(𝑋(1)
1 , ..., 𝑋

(1)
𝑛 ), 𝑌2 = 𝑔(𝑋(2)

1 , ..., 𝑋
(2)
𝑛 ), all the way to 𝑌𝑘 = 𝑔(𝑋(𝑘)

1 , ..., 𝑋
(𝑘)
𝑛 ) will

give us a collection of random variables 𝑌𝑖 , each of which has the same distribution as
𝑔(𝑋1 , ..., 𝑋𝑛). Then taking a simple average can give us 𝑌 = 1

𝑘

∑
𝑌𝑖 = 𝜃.

This general approach, the idea of taking repeated random sampling in order to obtain
a result that may otherwise be computationally intractable, is known as a Monte Carlo
method. The expected difference between 𝑌 and 𝜃 is E[(𝑌 − 𝜃)2] = Var(𝑌); so it is
reasonable that our goal is to get the variance of 𝑌 to be as low as possible.

Suppose we only generate two variables, 𝑌1 and 𝑌2. Then Var(𝑌) = Var
( 1

2 (𝑌1 + 𝑌2)
)
=

1
2Var(𝑌1)+ 1

2Cov(𝑌1 , 𝑌2). So if we want to decrease the variance, we might want Cov(𝑌1 , 𝑌2)
to be negative, so that 𝑌1 and 𝑌2 are negatively correlated versus being fully indepen-
dent. We won’t describe the generation technique here, but these negatively correlated
variables are termed antithetic variates.

Recall the conditional variance formula Var(𝑋) = E[Var(𝑋 |𝑌)] + Var(E[𝑋 |𝑌]). Rear-
ranging terms tells us that Var(E[𝑋 |𝑌]) ≤ Var(𝑋). Once again, we can try to compute
E[𝑔(𝑋1 , ..., 𝑋𝑛) by simulating 𝑋 = (𝑋1 , ..., 𝑋𝑛) and computing𝑌 = 𝑔(𝑋). From the above
inequality this must mean Var(E[𝑌 |𝑍]) ≤ Var(𝑌). So if we can compute the conditional
expectation E[𝑌 |𝑍] we will get a lower variance estimator than calculating E[𝑌] directly.

Finally, suppose we have a case where we have some function 𝑓 for which E[ 𝑓 (𝑋)] =
E[ 𝑓 (𝑋1 , ..., 𝑋𝑛)] = 𝜇 is known. Then for some constant 𝑎 the random variable

𝑊 = 𝑔(𝑋) + 𝑎[ 𝑓 (𝑋) − 𝜇]

is an estimator for E[𝑔(𝑥)]. Using some calculus, we can minimize Var(𝑊) when

𝑎 =
−Cov( 𝑓 (𝑋), 𝑔(𝑋))

Var( 𝑓 (𝑋)) .

The quantities here (Var( 𝑓 (𝑋)) and Cov( 𝑓 (𝑋), 𝑔(𝑋))) are in general not possible to com-
pute, so we can further estimate them with simulated data. This idea of control variates
is the most broadly applicable and efficient method of variance reduction for Monte
Carlo problems.
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