
Linear Algebra

※ Vector Spaces

The fundamental structure in linear algebra is a vector, a collection of objects (components)
drawn from a field ℱ that is typically represented in row form or column form:

(
𝑥1 𝑥2 . . . 𝑥𝑛

)
,

©­­­­­«
𝑥1

𝑥2
...

𝑥𝑛

ª®®®®®¬
.

A set whose elements are vectors and is closed under (element-wise) addition and
multiplication by a scalar is a vector space 𝒱 . From these definitions come other
properties, such as commutativity and associativity of vector addition, and the existence
of a unique zero vector.

A matrix ℳ𝑚×𝑛(ℱ ) or A is a two-dimensional 𝑚 × 𝑛 array whose elements are also
drawn from the field ℱ , where each element is 𝑎𝑖 𝑗 , where 𝑖 is the index of the row and 𝑗

the column. ©­­­­­«
𝑎11 𝑎12 . . . 𝑎1𝑛

𝑎21 𝑎22 . . . 𝑎2𝑛
...

...
. . .

...

𝑎𝑚1 𝑎𝑚2 . . . 𝑎𝑚𝑛

ª®®®®®¬
.

If 𝑚 = 𝑛, we call the matrix square. We may also obtain a matrix B in ℳ𝑛×𝑚(ℱ ) by
swapping the indices of A (the transpose A⊤) i.e. 𝑏𝑖 𝑗 = 𝑎 𝑗𝑖 . If A⊤ = A, the matrix is
symmetric. If A⊤ = −A, we instead call it skew-symmetric. The set of values 𝑎𝑖𝑖 forms
the diagonal of the matrix; a matrix which only has nonzero entries on the diagonal is
a diagonal matrix, and a matrix that does not have nonzero entries below the diagonal
is upper triangular. Any matrix with very few nonzero entries is sparse. The sum of
the diagonal entries of a matrix,

∑min(𝑚,𝑛)
𝑖=1 𝑎𝑖𝑖 , is the trace of the matrix trace(A).

1.1 Subspaces

A subset 𝒲 of 𝒱 is a subspace if 𝒲 is also a vector space, with the same definitions of
multiplication and scalar addition as 𝒱 . The intersection of subspaces of a vector space
is also a subspace.
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Linear Algebra 1.2 Linear Dependence

1.2 Linear Dependence

For a vector space 𝒱 and a subset 𝒮, a vector v that can be expressed as the sum of some
other scaled vectors in 𝒱 is a linear combination of those vectors, i.e. if v =

∑
𝑖 𝑎𝑖v𝑖 .

The set of all possible linear combinations of the vectors in 𝒮 is the span of that group
of vectors, denoted span(𝑆). The span of any subset of 𝒱 has to be a subspace, and
(conversely) any subspace containing any subset must also contain the span of that
subset. If span(𝒮) = 𝒱 then we say that 𝒮 generates 𝒱 .

If it is possible for a linear combination of a set of vectors to be zero with not all the
𝑎𝑖 = 0, that set is linearly dependent. Otherwise it is linearly independent. By this
definition, removing a vector that is the linear combination of the other vectors will not
change the span of the set. A linearly independent set 𝒮 can become linearly dependent
by adding any vector v ∈ span(𝒮). No superset of a linearly dependent set can be
linearly independent.

1.3 Basis, Dimension

A basis 𝛽 for 𝒱 is any linearly independent set of vectors that spans 𝒱 . The basis
formed exclusively with vectors with exactly one nonzero element is the standard basis
for that vector space (in the case of ℱ𝑛 , the standard basis is {𝑒0 = (1, 0, . . . , 0), ..., 𝑒𝑛 =

(0, 0, . . . , 1)}). 𝛽 is a basis for 𝒱 only if every vector in 𝒱 is a unique linear combination
of the basis vectors.

This “size" of the bases is known as the dimension of the vector space, denoted dim(𝒱 ).
The size of the basis is the size of the largest linearly independent subset. Conversely,
any linearly independent set of size dim(𝒱 ) must be a basis, as must any spanning set
of size dim(𝒱 ).

※ Linear Transformations, Matrices

A linear transformation 𝑇 : 𝒱 ↦→ 𝒲 is a mapping from 𝒱 to 𝒲 such that, for any
𝑐 ∈ ℱ and x, y ∈ 𝒱 , 𝑇(𝑐x + y) = 𝑐𝑇(x) + 𝑇(y). This means 𝑇(0) = 0. If we have a
map where 𝑇(0) = 𝑐 ∈ ℱ and 𝑇 − 𝑐 is linear, we call 𝑇 an affine transformation. In a
2-dimensional world, this is like the difference between lines going through (0, 0) and
lines with a 𝑦-intercept. Examples of such linear transformations include integration,
differentiation, rotation, reflection, and projection.

Some special linear transformations: the identity transformation 𝐼𝒱 : 𝒱 ↦→ 𝒱 takes
every element to itself (𝐼𝒱 (x) = x) and the zero transformation 𝑇0 : 𝒱 ↦→ {0} maps
every element to the zero vector (𝑇0(x) = 0). If we consider 𝒱 = 𝒲1 ⊕ 𝒲2, with
x ∈ 𝒱 = x1 ∈ 𝒲1 + x2 ∈ 𝒲2, then the projection of x onto 𝒲1 is 𝑝𝑟𝑜 𝑗𝒲1(x) = x1.
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Linear Algebra 2.1 Rank, Nullity

2.1 Rank, Nullity

Two sets which help understand the intrinsic properties of 𝑇 are:

1. The null space or kernel of 𝑇, denoted 𝒩(𝑇) or ker(𝑇), the set of vectors which 𝑇

sends to zero {x : 𝑇(x) = 0}

2. The range or image of 𝑇, denoted ℛ(𝑇) or im(𝑇), he set of vectors in 𝒲 that result
from applying 𝑇 to vectors in 𝒱 , {w ∈ 𝒲 : (∃v ∈ 𝒱 : 𝑇(v) = w)}.

The null space and range are subspaces of 𝒱 and 𝒲 , respectively. We additionally
name the dimension of the kernel the nullity of 𝑇, and the dimension of the image the
rank.

Rank-Nullity Theorem

dim(ker(𝑇)) + dim(im(𝑇)) = null(𝑇) + rank(𝑇) = dim(𝒱 ).

2.2 Matrices

An ordered basis for a vector space𝒱 is a sequencing of basis vectors. Any vector x ∈ 𝒱
can be characterized as a linear combination of vectors in an ordered basis

∑
𝑖 𝑎𝑖v𝑖 . The

coefficients 𝑎𝑖 again form a size-𝑛 vector, known as the coordinate vector [x]𝛽.

For a linear transformation 𝑇 : 𝒱 → 𝒲 , suppose that 𝒱 has a basis 𝛽 and 𝒲 has a
basis 𝛾. Then just as there is a coordinate representation for x according to 𝛽, there must
be such a representation for 𝑇 under 𝛽, 𝛾. This representation is the coefficient matrix
A or [𝑇]𝛽→𝛾 (so 𝑇(v𝑗) =

∑
𝑖 𝑎𝑖 𝑗(w𝑖)).

Matrices preserve linearity, and are hence linear themselves, i.e. [𝑎𝑇+𝑈]𝛽→𝛾 = 𝑎[𝑇]𝛽→𝛾+
[𝑈]𝛽→𝛾. Therefore the set of all transformations from 𝒱 → 𝒲 is itself a vector space
ℒ(𝒱 ,𝒲).

For 𝑇 : 𝒱 → 𝒲 and𝑈 : 𝒲 → 𝒵 , the composition𝑈 ◦𝑇 is written as𝑈𝑇 : 𝒱 → 𝒵 and
is linear. If 𝑇 : 𝒱 → 𝒱 , we can compose 𝑇 with itself. 𝑇2 = 𝑇𝑇, 𝑇3 = 𝑇2𝑇, 𝑇 𝑘 = 𝑇 𝑘−1𝑇.
If A = [𝑈]𝛽→𝛾 and B = [𝑇]𝛼→𝛽, then AB = [𝑈𝑇]𝛼→𝛾. If 𝛼 has dimension 𝑛, 𝛽 has
dimension 𝑝, and 𝛾 has dimension 𝑚, then A ∈ ℱ 𝑚×𝑝 , B ∈ ℱ 𝑝×𝑛 , and AB ∈ ℱ 𝑚×𝑛 .

(AB)𝑖 𝑗 =
𝑝∑

𝑘=1
𝑎𝑖𝑘𝑏𝑘 𝑗 , 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛.

This is matrix multiplication, and it is not commutative in general, but it is both asso-
ciative and distributive. A matrix which, when multiplied by itself 𝑘 times is zero (i.e.
M s.t. M𝑘 = 0) is nilpotent.
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Linear Algebra 2.3 Dual Spaces

2.2.1 Invertibility, Isomorphism

For a linear transformation 𝑇 : 𝒱 ↦→ 𝒲 , a function 𝑈 : 𝒲 ↦→ 𝒱 is an inverse of 𝑇,
written as 𝑇−1, if 𝑇𝑈 = 𝐼𝒲 and 𝑈𝑇 = 𝐼𝒱 . For any v ∈ 𝒱 , (𝑇−1𝑇)(v) = v – and for any
w ∈ 𝒲 , (𝑇𝑇−1)(w) = w. For this to be true, 𝑇 must be bĳective, i.e. dim(𝒱 ) = dim(𝒲)
(rank-nullity theorem). Note (𝑇𝑈)−1 = 𝑈−1𝑇−1. From a matrix point of view, the 𝑛 × 𝑛

matrix A is invertible if there exists some 𝑛 × 𝑛 matrix B such that AB = BA = I𝑛 .

If a matrix’s inverse is also its transpose, i.e. AA⊤ = A⊤A = I𝑛 , then it is orthogonal.
For a complex-valued matrix A, the conjugate transpose A∗ is A⊤ where all elements
are replaced by their complex conjugates. If AA∗ = A∗A = I𝑛 , then we call A unitary.
For C, the conjugate transpose is the Hermitian adjoint.

Invertibility formalizes the notion that certain vectors "resmeble" another, like how
adding two matrices inℳ2×2(ℱ ) looks very similar to adding two polynomials in 𝑃4(ℱ ).
The "structure preserving" operation that relates the two spaces is an isomorphism,
meaning there is an invertible linear transformation 𝑇 between the two spaces. Two
vector spaces are isomorphic if and only if they are the same dimension.

Any transformation can be described by an equivalent matrix multiplication. The
change-of-coordinate matrix Q, such that 𝛽′

𝑖
=

∑
𝑞𝑖 𝑗𝛽 𝑗 , is an invertible matrix that

lets us change a vector’s basis representation.

Linear transformations that stay within 𝒱 are known as linear operators, 𝑇 : 𝒱 ↦→ 𝒱 .
𝑇 in basis 𝛽 can be represented in basis 𝛽′ by applying consecutive change of basis
transformations:

[𝑇]𝛽′ = [𝐼𝒱 ]𝛽→𝛽′[𝑇]𝛽[𝐼𝒱 ]𝛽′→𝛽 = Q−1[𝑇]𝛽Q.

If there exists an 𝑛 × 𝑛 matrix B such that B = Q−1AQ, we say that A and B are similar.

2.3 Dual Spaces

A transformation that sends 𝒱 to ℱ is known as a linear functional on 𝒱 . 𝒱 and 𝒱 ∗

are isomorphic. The transformation𝑈 : 𝒲 ∗ → 𝒱 ∗ such that (𝑈(𝑔))(v) = (𝑔𝑇)(v), where
𝑔 ∈ 𝒲 ∗, is precisely the transpose of 𝑇. The transpose is the algebraic adjoint of 𝑇. The
dual of the dual (𝒱 ∗∗) is isomorphic to 𝒱 .

※ Systems of Linear Equations

Linear algebra can be used to find solutions to sets of equations of the form
∑

𝑖 𝑎𝑖𝑥𝑖−𝑏 = 0.
This is done by applying elementary row operations to manipulate them into forms
which yield solutions. s

1. Swapping rows/columns of the matrix

2. Multiplying rows/columns in-place by a scalar
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Linear Algebra 3.1 Rank, Inverse

3. Adding a scalar multiple of a row/column to another row/column.

When we apply a single one of these operations to the identity matrix I, we call the result
an elementary matrix. Consecutive row operations is equivalent to left-multiplying the
corresponding elementary matrix.

3.1 Rank, Inverse

A square matrix is invertible precisely if rankA = 𝑛 (full-rank). Rank is preserved
through multiplication with invertible matrices. Since elementary operations are in-
vertible, they are therefore also rank-preserving. The rank of a matrix is the same as the
nuber of its linearly independent rows/columns.

Any matrix can be transformed (using elementary row and column operations) into the
form

D = BAC =

(
I𝑟 0𝑟,𝑛−𝑟

0𝑚−𝑟,𝑟 0𝑚−𝑟,𝑛−𝑟

)
,

which reveals the rank of the matrix immediately. Given two matrices A and B, we
define the augmented matrix C = (A|B) as the column-wise concatenation of A and B.
If we augment A with the identity matrix, and perform row operations to transform A
into I, we will retrieve the inverse of A:

A−1(A|I𝑛) = (A−1A|A−1I) = (I|A−1).

3.2 Solving Systems of Linear Equations

Consider the system of equations:

𝑎11𝑥1 + 𝑎12𝑥2+ . . . + 𝑎1𝑛𝑥𝑛 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2+ . . . + 𝑎2𝑛𝑥𝑛 = 𝑏2

...

𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2+ . . . + 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚

We call such a system a system of linear equations over ℱ . From our knowledge of
the definition of matrix multiplication, we may equivalently write this system as the
equation Ax = b, where:

A =

©­­­­­«
𝑎11 𝑎12 . . . 𝑎1𝑛

𝑎21 𝑎22 . . . 𝑎2𝑛
. . .

𝑎𝑚1 𝑎𝑚2 . . . 𝑎𝑚𝑛

ª®®®®®¬
, x =

©­­­­­«
𝑥1

𝑥2
...

𝑥𝑛

ª®®®®®¬
, b =

©­­­­­«
𝑏1

𝑏2
...

𝑏𝑚

ª®®®®®¬
.

If b = 0, the solution set is the null space of A.
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Linear Algebra Determinants

We can attempt to transform the matrix into reduced-row echelon form in order to find
the solution vector(s).

1. All non-zero rows are above all zero rows,

2. The first nonzero entry in each row is the only nonzero entry in that column

3. The first nonzero entry in each row is to the right of the nonzero entry before it,
and its value is 1.

The following augmented matrix is in reduced row echelon form.

©­­«
1 0 2 0 1
0 1 0 0 2
0 0 0 1 3

ª®®¬
The corresponding system of linear equations admits no unique solution. It consists of
the equations 𝑥1 + 2𝑥3 = 1, 𝑥2 = 2, and 𝑥4 = 3. There are no unique values for 𝑥1 and 𝑥3

that we can determine, so there are infinitely many possible solutions.

The most efficient elementary method to turn a matrix into its reduced-row echelon
form takes two steps – the forward pass uses elementary operations to transform the
augmented matrix into an upper triangular matrix, where we satisfy condition (3). The
backward pass then performs operations to satisfy conditions (1) and (2) above the
diagonal. This method is known as Gaussian elimination.

If a row in reduced-row echelon form has more than one nonzero entry, or if either a
row or column has only zeros, the system has infinitely many solutions. If the row has
only zeros except for the entry in the very last column, the system has no solutions. If
the left hand side has exactly one entry in each row and column (the left side of the
augmented matrix is the identity matrix), the system admits exactly one solution.

※ Determinants

For a matrix A ∈ ℳ2×2(ℱ ), the determinant is:

det(A) =
�����𝑎 𝑏

𝑐 𝑑

����� = 𝑎𝑑 − 𝑏𝑐, A−1 =
1

det(A)

(
𝑑 −𝑏
−𝑐 𝑎

)
.

Determinant (Cofactor)

For a general matrix A ∈ ℳ𝑛×𝑛(F), the determinant of A is:

det(A) =
𝑛∑
𝑗=1

𝑎𝑖 𝑗(−1)𝑖+𝑗 det(Ã𝑖 𝑗).
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Linear Algebra Diagonalization

Here, Ã𝑖 𝑗 represents the matrix A with row 𝑖 and column 𝑗 removed. From this
definition, it becomes clear that any matrix with a row (or column) of all zeros
has a determinant of zero.

The scalar (−1)𝑖+𝑗 det(Ã𝑖 𝑗) is called a cofactor. The matrix formed by all
cofactors is known as the cofactor matrix C; its transpose adj(A) = C⊤ is the clas-
sical adjoint or adjugate matrix to A, with the property that A adj(A) = det(A)I𝑛 .

The determinant is impacted by performing elementary row operations on the original
matrix.

1. Swapping two rows of A will negate det(A)

2. Multiplying a row by a scalar results in 𝑘 det(A)

3. Adding a scalar multiple of one row to another does not hcange det A

4. The determinant of an upper-triangular matrix is the product of its diagonal

5. det(AB) = det(A)det(B).

6. A matrix is invertible if and only if det(A) ≠ 0

※ Diagonalization

Linear transformations can geometrically look like a rotation, a projection, a stretch, a
shear, etc. Matrices that are diagonalizable admit some basis such that when they are
represented in that basis, they are diagonal (only "stretching").

5.1 Eigenbasis

If D = [𝑇]𝛽 is a diagonal matrix, then applying D to a basis vector v is then 𝑇(𝑣 𝑗) =∑𝑛
𝑖=1 𝑑𝑖 𝑗v𝑖 = 𝜆 𝑗v𝑗 where 𝜆 𝑗 = 𝑑 𝑗 𝑗 . Such a vector v where 𝑇(v) = 𝜆v for a scalar 𝜆 is

called an eigenvector, and the corresponding 𝜆 is called an eigenvalue (equivalently,
Av = 𝜆v). These eigenvectors form a subspace ℰ𝜆.

Since Av = 𝜆v, (A − 𝜆I𝑛)v = 0. The nullspace of this matrix is therefore nontrivial,
so it is not full rank, meaning its determinant is zero. Solving det(A − 𝜆I𝑛) = 0 (the
characteristic polynomial) will yield the eigenvalues of A (diagonalization).

The characteristic polynomial has degree 𝑛, so by the fundamental theorem of algebra
it has 𝑛 roots (that may lie outside the field ℱ ). For example there is no manipulation
of a rotation matrix that will yield a pure stretching operation (its roots are complex).
When a matrix is diagonalizable, we can convert Av = 𝜆v into matrix form AQ = DQ.
The form A = QDQ−1 (D = Q−1AQ) is the eigendecomposition of A.
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Linear Algebra 5.2 Markov Chains

For a matrix to be diagonalizable, its characteristic polynomial must split over ℱ , i.e. it
must decompose into the product of 𝑛 binomial terms 𝑐

∏(𝜆 − 𝑎𝑖). A transformation is
diagonalizable if and only if every eigenspace has dimension equal to the multiplicity of
its corresponding eigenvalue. So if a matrix has characteristic polynomial−(𝜆−3)2(𝜆−4),
the matrix (A − 3I) must have nullity 2 (meaning the eigenspace corresponding to
𝜆 = 3 must have dimension 2). This is not always true – if 𝜆 has multiplicity 𝑚, its
corresponding eigenspace can have any dimension up to 𝑚.

5.2 Markov Chains

Long-running systems, which can be modeled as a series of repeated, identical matrix
multiplications, can be made inexpensive with diagonal matrices. So the limit of a
sequence of matrices can be represented as:

lim
𝑚→∞

A𝑚 = lim
𝑚→∞

(QDQ−1)𝑚 = lim
𝑚→∞

QDQ−1QDQ−1... = lim
𝑚→∞

QD𝑚Q−1

If D is the eigenvalue matrix, the limit can only exist if |𝜆𝑚𝑎𝑥| ≤ 1 (otherwise lim𝜆𝑚 =

±∞). In fact, if |𝜆𝑖| < 1, it will shrink to 0 in the limit.

If A is a square matrix whose columns are non-negative and sum to 1, it is a transition
matrix, where entry (𝑖 , 𝑗) is the probability of a state change from state 𝑖 to state 𝑗.

Markov Chains

A system where elements belong to states that switch probabilistically over time
is a stochastic process. If the probability of of transitioning from 𝑖 → 𝑗 is
independent of how we arrived at state 𝑖, we say the process exhibits the Markov
property and is a Markov process or Markov chain.

A transition matrix A is called regular if, for some 𝑚, A𝑚 contains no zero elements. A
state that can be entered but never left (i.e. with probability zero) is an absorbing state.

5.3 Invariant Subspaces, The Cayley-Hamilton Theorem

If 𝑇(v) stays in the subspace 𝒲 for all v, then 𝒲 is 𝑇-invariant. The “smallest" 𝑇-
invariant subspace for a vector space is span({v, 𝑇(v), 𝑇2(v), ...})., the 𝑇-cyclic subspace
generated by v. The characteristic polynomial of 𝑇𝒲 neatly divides the polynomial 𝑇
for the original space (this is consequence of the fact that the basis vectors for 𝒲 can be
extended to a basis for 𝒱 ).

We can use this property to get more information about the characteristic polynomial
for 𝑇. If 𝒲 is the 𝑇-cyclic subspace, then 𝑘 = dim(𝒲) is the smallest 𝑘 such that
𝛽 = {v, 𝑇(v), ..., 𝑇 𝑘−1(v)} is a basis for 𝒲 . Since 𝒲 is 𝑇-invariant, every vector w is
a linear combination of these basis vectors, meaning 𝑇(w) = 𝑏0𝑇(v) + ... + 𝑏𝑘−1𝑇

𝑘−1(v).
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Linear Algebra Inner Product Spaces

Since 𝑇 𝑘(v) ∈ 𝒲 , there exist scalars 𝑎𝑖 (coefficients of the basis vectors) such that

𝑇 𝑘(v) + 𝑎0I𝑛(v) + 𝑎1𝑇(v) + ... + 𝑎𝑘−1𝑇
𝑘−1(v) = 0.

Since 𝑇𝒲 (𝛽 𝑗) =
∑

𝑖 𝑎𝑖 𝑗𝛽𝑖 , the matrix form of 𝑇𝒲 is then

[𝑇𝒲 ]𝛽 =

©­­­­­«
0 . . . 0 −𝑎0

1 . . . 0 −𝑎1
...

...
...

0 . . . 1 −𝑎𝑘−1

ª®®®®®¬
and the characteristic polynomial of 𝑇𝒲 is

𝑓 (𝜆) = (−1)𝑘(𝜆𝑘 + 𝑎0 + 𝑎1𝜆 + ...𝑎𝑘−1𝜆
𝑘−1).

The Cayley-Hamilton Theorem

For𝑇, a linear operator on a finite-dimensional vector space𝒱 , let 𝑓 (𝑡) be the char-
acteristic polynomial of 𝑇. Then 𝑓 (𝑇) = 𝑇0, i.e. 𝑇 satisfies its own characteristic
equation.

Proof sketch: Since we know 𝑇 𝑘(v) + 𝑎0I𝑛(v) + ... + 𝑎𝑘−1𝑇
𝑘−1(v) = 0, and the characteristic

polynomial of 𝑇𝒲 is 𝑔(𝜆) = (−1)𝑘(𝜆𝑘 + 𝑎0 + ... + 𝑎𝑘−1𝜆𝑘−1), substituting reveals that
𝑔(𝑇)(v) = 0. Since the characteristic polynomial of a𝑇-invariant subspace neatly divides
the characteristic polynomial of the original space, 0 must divide 𝑓 (𝑇)(v) therefore
𝑓 (𝑇) = 𝑇0.

Practically, the Cayley-Hamilton theorem is a powerful tool in control theory (in a
sequence of infinite derivatives of the observability matrix, it lets us know after which
element the remaining derivatives are no longer linearly independent). It can also be
used to find the inverse of a matrix by multiplying the characteristic equation by 𝑇−1,
rearranging terms, and dividing by 𝑎0.

※ Inner Product Spaces

An inner product ⟨·, ·⟩ : 𝒱 ×𝒱 ↦→ ℱ is an object that lets us identify similarity between
two vectors. It is linear in x, conjugate linear in y (⟨x, 𝑐y⟩ = 𝑐⟨x, y⟩), and always non-
negative. The standard inner product on ℱ 𝑛 is ⟨x, y⟩ =

∑𝑛
𝑖=1 𝑎𝑖𝑏𝑖 . For two matrices A

and B, the Frobenius inner product is trace(B∗A) = ∑∑
𝑏 𝑖 𝑗𝑎𝑖 𝑗 . These are the implicit

inner products for these spaces.

The norm or length of a vector x is ∥x∥ =
√
⟨x, x⟩. The Euclidean norm is the square root

of the standard inner product on a vector space. Norms carry with them the following
essential properties:

9



Linear Algebra 6.1 Orthonormal Bases

1. ∥𝑐x∥ = |𝑐|∥x∥

2. ∥x∥ = 0 ⇐⇒ x = 0

3. Cauchy-Schwarz Inequality: ⟨x, y⟩ ≤ ∥x∥ · ∥y∥

4. Triangle Inequality: ∥x + y∥ ≤ ∥x∥ + ∥y∥

In the Cauchy-Schwarz inequality, ⟨x, y⟩ is less than ∥x∥·∥y∥ by a factor of cos(𝜃), where
𝜃 is the angle between x and y (so ⟨x, y⟩ = ∥x∥∥y∥ cos𝜃). If ⟨x, y⟩ = 0 and neither vector
is 0 then 𝜃 = ±𝜋/2, meaning the vectors are orthogonal. A subset 𝒮 ⊆ 𝒱 is orthogonal
if any two vectors in 𝒮 are orthogonal. If all those vectors are also unit vectors (have a
norm of 1) we refer to 𝒮 as orthonormal. Any vector can be made into a unit vector by
dividing it by its norm.

6.1 Orthonormal Bases

An orthonormal basis is an ordered basis of unit vectors where every pair of vectors is
orthogonal. Orthogonal bases make it easier to invert matrices and the normalization
helps remove scaling terms from matrix-vector equations. Orthonormal bases are in
this way metric-preserving, i.e. they preserve the length and angle of vectors.

Gram-Schmidt Orthogonalization

Any linearly independent set of vectors 𝒮 = {w1 , ...,w𝑛} can be made an orthog-
onal subset by iteratively subtracting orthogonal components from each vector:

v𝑘 = w𝑘 −
𝑘−1∑
𝑗=1

⟨w𝑘 , v𝑗⟩
∥v𝑗∥2 v𝑗

The set of all vectors in 𝒱 that are orthogonal to a set 𝒮 is called the orthogonal
complement of 𝒮, denoted 𝒮⊥. Any vector in 𝒱 can be uniquely characterized as the
sum of a vector in 𝒮, and a vector orthogonal to 𝒮. The vector u in 𝒮 is of particular
interest – this vector is the “closest" vector to y that lives in 𝒮 (orthogonal projection of
y onto 𝒮).

6.2 Normal and Self-Adjoint Operators

A linear operator is diagonalizable if 𝒱 admits a basis consisting of eigenvectors of 𝑇.
As a consequence we can determine diagonalizability by looking at the nullity of each
eigenspace ℰ𝜆. Similarly, normality is a necessary and sufficient condition for whether
an inner product space admits an orthonormal basis of eigenvectors.

10



Linear Algebra 6.2 Normal and Self-Adjoint Operators

Schur Decomposition

If𝑇 is a linear operator on 𝒱 , and the characteristic polynomial of𝑇 splits over ℱ ,
then there exists an orthonormal basis 𝛾 for 𝒱 such that [𝑇]𝛾 is upper triangular,
yielding the Schur decomposition

A = QUQ−1

where U is the upper triangular matrix in question, and the columns of Q are the
basis vectors in question.

If an orthonormal basis of eigenvectors 𝛽 exists, then [𝑇]𝛽 is a diagonal matrix; so [𝑇]∗𝛽
is diagonal as well; since diagonal matrices commute, 𝑇 and 𝑇∗ commute (meaning
𝑇𝑇∗ = 𝑇∗𝑇). Linear operators with this property are called normal.

It is not enough to say that an operator over a real inner product space is normal for it
to be diagonalizable – this is because the characteristic polynomial may not split over
the reals. However, due to the fundamental theorem of algebra, every polynomial splits
over C. Schur’s theorem then allows us to find an orthonormal basis; normality allows
us to prove that all vectors in this basis are eigenvectors. A brief sketch of a proof by
induction: assume v1 , ..., v𝑘−1 are eigenvectors. Then if 𝜆 𝑗 corresponds to v𝑗<𝑘 , we have
(by normality) that 𝑇∗(v𝑗) = 𝜆 𝑗v𝑗 . Then for 𝑗 ≠ 𝑘, 𝐴 𝑗𝑘 = ⟨𝑇(v𝑘), v𝑗⟩ = ⟨v𝑘 , 𝑇

∗(v𝑗)⟩ =

𝜆 𝑗⟨v𝑘 , v𝑗⟩ = 0, so 𝐴𝑘𝑘 = 𝜆𝑘 and 𝐴 𝑗𝑘 = 0; so v𝑘 is an eigenvector of 𝑇.

So normality is a necessary and sufficient condition for the existence of an orthonormal
basis of eigenvectors (and is therefore a sufficient condition for diagonalizability) for
linear operators over a complex inner product space.

For real inner product spaces, we must add the condition that 𝑇 = 𝑇∗ (this causes all
eigenvalues to be real, and hence makes the characteristic polynomial split over the
reals, since 𝜆v = 𝑇(v) = 𝑇∗(v) = 𝜆v means 𝜆 = 𝜆). A transformation with this property
is equal to its own adjoint – it is self-adjoint (also called Hermitian). Then the same
logic from above follows – over real inner product spaces, an orthonormal basis of
eigenvectors exists if and only if 𝑇 is Hermitian. For real matrices, being Hermitian is
equivalent to being symmetric; the conclusion is that every symmetric matrix over a
real, finite-dimensional vector space admits an orthogonal basis composed entirely of
eigenvectors.

Finally, some common types of self-adjoint matrices: if ⟨𝑇(x), x⟩ > 0 (equivalently,
x⊤Ax > 0, or 𝜆 > 0 for all 𝜆), we call 𝑇 positive definite. If we relax the strict inequality
to a non-strict inequality, we call it positive semi-definite. Negative-definiteness and
negative-semidefiniteness are defined similarly.

11



Linear Algebra 6.3 Unitary and Orthogonal Operators

6.3 Unitary and Orthogonal Operators

Transformations that are length-preserving, i.e. ⟨𝑇(v), 𝑇(v)⟩ = ⟨v, v⟩ are unitary (over
C) or orthogonal (over R).

Since𝑇(x) = 𝜆x for appropriate eigenvalues/eigenvectors𝜆 and x, and since ⟨𝑇(x), 𝑇(x)⟩ =
𝜆2⟨x, x⟩ = ⟨x, x⟩, we must have |𝜆| = 1. In fact 𝒱 has an orthonormal basis of eigenvec-
tors with all |𝜆| = 1 if and only if there exists some𝑇 that is unitary – if ℱ = Rwe require
the stronger condition that 𝑇 is also self-adjoint (such an operator, where 𝑇 = 𝑇−1, is
called involutory).

A complex normal/real symmetric matrix A admits an orthonormal basis consisting of
eigenvectors. Therefore, for the corresponding diagonal matrix D = Q−1AQ, each Q
must be a unitary/orthogonal matrix – we say then that A is unitarily/orthogonally
equivalent to D (the resulting decomposition, A = PDP∗, is known as the spectral
decomposition).

6.4 Spectral Theorem

Recall that, for a subspace described by a direct sum 𝒲 = 𝒲1 ⊕ 𝒲2, the linear trans-
formation 𝑇(w) = w1 is the projection of w onto 𝒲1. While there are multiple ways
to perform a projection onto W1, the one we are most interested in is the orthogonal
projection – the projection in which we map a vector onto the closest (defined in terms
of inner product, which, again, represents “distance") vector in 𝒲 . A projection 𝑇

is an orthogonal projection if im(𝑇)⊥ = ker(𝑇) (ker(𝑇)⊥ = im(𝑇)). By the nature of
being a projection, such a 𝑇 must have 𝑇2 = 𝑇 (it is idempotent). Additionally, since
ker(𝑇) = im(𝑇)⊥, we may determine that 𝑇 = 𝑇∗ (𝑇 is normal/self-adjoint).

Spectral Theorem

Let 𝑇 is a linear operator on a finite-dimensional inner product space 𝒱 over ℱ
with 𝑘 distinct eigenvalues, and𝑇 is either normal ifℱ = Cor self-adjoint ifℱ = R.
Then suppose 𝒲𝑖 is the eigenspace corresponding to 𝜆𝑖 (recall ℰ𝜆 = ker(A−𝜆I)).
Additionally, let 𝑇𝑖 be the orthogonal projection of 𝒱 onto 𝒲𝑖 . Then:

1. 𝒱 =
⊕

𝒲𝑖 ;
2. 𝒲⊥ =

⊕
𝑗≠𝑖 𝒲𝑖 ;

3. 𝑇𝑖𝑇𝑗 = 𝛿𝑖 𝑗𝑇𝑖 ;
4. 𝐼 =

∑
𝑇𝑖 ;

5. 𝑇 =
∑

𝜆𝑖𝑇𝑖 .
We call the eigenvalues the spectrum of 𝑇, and equality (4) is known as the
resolution of the identity operator. The final statement (5) is more broadly
referred to as the spectral decomposition.

12



Linear Algebra 6.5 Singular Value Decomposition

Broadly, we conclude that if 𝑇 is a normal/self-adjoint operator, then its
eigenvectors form an orthonormal basis for 𝒱 , and 𝑇 can be described as the
weighted (by the eigenvalues) sum of projections onto those eigenvectors. An
even more straightforward consequence: if A is a real symmetric matrix, then it
is orthogonally diagonalizable (A = PDP⊤).

6.5 Singular Value Decomposition

We previously established the relationship between the existence of an orthonormal
basis of eigenvectors and the property of being normal or self-adjoint. Here, we propose
a more general theorem that extends to all linear transformations on complex and real
(finite-dimensional) inner product spaces.

Singular Value Theorem

For a rank 𝑟 linear transformation 𝑇 : 𝒱 → 𝒲 , where dim(𝒱 ) = 𝑛 and
dim(𝒲) = 𝑚, there exist orthonormal bases {v1 , ..., v𝑛} for 𝒱 and {u1 , ..., u𝑚}
for 𝒰 and a set of positive scalars 𝜎1 ≥ 𝜎2 ≥ ... ≥ 𝜎𝑟 such that 𝑇(v𝑖) = 𝜎𝑖u𝑖 ,
where 𝜎𝑖 = 0 if 𝑖 > 𝑟. The 𝜎𝑖 in question are the singular values of 𝑇. In fact, 𝜎2

𝑖

is the eigenvalue of 𝑇 corresponding to eigenvector v𝑖 , meaning that the singular
values are uniquely determined by 𝑇 (though the vectors are not).

The singular value theorem states that, by choosing the appropriate bases
for 𝒱 and 𝒲 , any linear transformation can be expressed as a diagonal matrix
(stretching operation). What’s more, these bases are guaranteed to be orthonor-
mal. Intuitively, a sphere in 𝒱 will get stretched (by the singular values) and
rotated (by the change of basis) into an ellipsoid in 𝒲 , where the dimensions
of the two objects before and after need not be the same. We can think of V∗ as
rotating the original ellipsoid so that it aligns with the standard basis vectors;
of Σ as performing a stretch in that alignment; and U as finally re-rotating the
newly stretched ellipsoid into its final orientation.

For an 𝑚 × 𝑛 matrix A of rank 𝑟, let Σ ∈ ℳ𝑚×𝑛(ℱ ) such that Σ𝑖𝑖 = 𝜎𝑖 for 𝑖 < 𝑟 and
0 otherwise. Then there exist unitary matrices U and V such that AV = ΣU; or more
commonly, A = UΣV∗. This is known as the singular value decomposition (SVD).

The singular value decomposition helps us partially extend the concept of an inverse
to nonsquare, noninvertible matrices. We achieve this by inverting the “part" of the
transformation that is invertible. Namely, we restrict such a transformation𝑇 exclusively
to ker(𝑇)⊥, to yield an invertible transformation 𝐿 : ker(𝑇)⊥ ↦→ im(𝑇). The matrix 𝑇† =

𝐿−1(𝑦) for 𝑦 ∈ im(𝑇) (and 0 otherwise) is known as the Moore-Penrose pseudoinverse

13



Linear Algebra Canonical Forms

of 𝑇. If A = UΣV∗, then A† = VΣ†U∗, where Σ†
𝑖𝑖
= 1/𝜎𝑖 .

※ Canonical Forms

Diagonalizable operators are immensely useful, but not all matrices are diagonalizable.
Here, we introduce analogues, termed canonical forms, which introduce a similar
representation that makes it easier to reason about some properties of matrices – this
practice is especially useful in the study of dynamical systems. In particular, we are
concerned with the Jordan canonical form, which only requires that the characteristic
polynomial splits, which it does over any algebraically closed field.

7.1 Jordan Form

Succinctly, we can find a union of ordered bases 𝛽 such that

[𝑇]𝛽 =

©­­­­­«
A1 0 · · · 0
0 A2 · · · 0
...

...
...

0 0 · · · A𝑘

ª®®®®®¬
where each A𝑖 has form

A𝑖 =

©­­­­­­­«

𝜆 1 0 · · · 0 0
0 𝜆 1 · · · 0 0
...

...
...

...
...

0 0 0 . . . 𝜆 1
0 0 0 . . . 0 𝜆

ª®®®®®®®¬
Such an A𝑖 is known as a Jordan block and 𝛽 is the Jordan canonical basis.

Take the Jordan block A𝑖 above. For basis vectors v1 , ..., v𝑘 , v1 must be an eigenvector.
Then 𝑇(v2) = v1 + 𝜆v2, meaning (𝑇 − 𝜆𝐼)v2 = v1, and (𝑇 − 𝜆𝐼)v3 = v2 and so on. Since
v1 ∈ ker(T−𝜆𝐼), we necessarily have for all appropriate v𝑖 that (𝑇 −𝜆𝐼)𝑝v𝑖 = 0, where 𝑝

is the size of the corresponding Jordan block. Such a vector x such that (𝑇 − 𝜆𝐼)𝑝(x) = 0
for some positive integer 𝑝 is called a generalized eigenvector corresponding to 𝜆.
Analogously, the subspace 𝒦𝜆 = {x ∈ ker((𝑇 − 𝜆𝐼)𝑝) : 𝑝 ∈ Z+} is the generalized
eigenspace corresponding to 𝜆.

Each 𝒦𝜆 is a 𝑇-invariant subspace that contains ℰ𝜆, and each 𝒦𝜆1 is mutually exclusive
with each 𝒦𝜆2 . If 𝑇 splits, 𝒦𝜆 is exactly equal to ker((𝑇−𝜆)𝑚) where 𝑚 is the multiplicity
of 𝜆 (this is the consequence of the Cayley-Hamilton theorem, though we omit the
proof). The key consequence: any vector x ∈ 𝒱 can be expressed as a sum of vectors in
𝒦𝜆𝑖

. More generally, if 𝑇 splits, and if 𝛽𝑖 is an ordered basis for 𝒦𝜆𝑖
, then 𝛽𝑖 ∩ 𝛽 𝑗 = ∅ and⋃

𝛽𝑖 is a basis for 𝒱 (meaning dim(𝒦𝜆𝑖
) = 𝑚). Notice that if 𝒦𝜆 = ℰ𝜆, this is equivalent

to saying that 𝑇 is diagonalizable.
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Linear Algebra 7.2 The Minimal Polynomial

The problem now becomes how to select bases for𝒦𝜆 such that the resulting union is the
Jordan canonical basis. In the example above, note that there is some cyclical relationship
between the generalized eigenvectors corresponding to 𝜆. For 𝑝, the smallest integer
such that (𝑇 − 𝜆𝐼)𝑝(x) = 0 (for any generalized eigenvector x), define the set

{(𝑇 − 𝜆𝐼)𝑝−1(x), ..., (𝑇 − 𝜆𝐼)(x), x},

the cycle of generalized eigenvectors (note the similarity to §6.4). Then if 𝛽 is the union
of the cycles of generalized eigenvectors of 𝑇, then for each cycle 𝛾 in 𝛽, 𝒲 = span(𝛾)
is 𝑇-invariant and [𝑇𝒲 ]𝛾 is a Jordan block; the basis 𝛽 is a Jordan canonical basis for 𝒱 .

7.2 The Minimal Polynomial

The Cayley-Hamilton theorem tells us that for every 𝑇 there exists an 𝑓 such that
𝑓 (𝑇) = 𝑇0, and we saw that the characteristic polynomial fulfills this property. In fact,
each linear operator admits a unique polynomial 𝑝 with smallest degree, known as
the minimal polynomial, which has some applications in field theory (so it is only
mentioned briefly here).

This 𝑝(𝑡) divides every other polynomial 𝑓 , since 𝑓 (𝑡) = 𝑞(𝑡)𝑝(𝑡) + 𝑟(𝑡) =⇒ 𝑇0 = 𝑓 (𝑇) =
𝑞(𝑇)𝑝(𝑇) + 𝑟(𝑇) = 𝑞(𝑇)𝑇0 + 𝑇0 (since 𝑟(𝑡) must have lower degree than 𝑝, but since 𝑝

is minimal, 𝑟(𝑡) can only equal 𝑇0). From this property, and from the fact that the
characteristic polynomial satisfies the Cayley-Hamilton theorem, we may deduce that 𝜆
is an eigenvalue of 𝑇 if and only if 𝑝(𝜆) = 0, so 𝑝 is of form

∏
𝑖(𝑡 −𝜆𝑖)𝑚𝑖 for some powers

𝑚𝑖 . Furthermore 𝑇 is diagonalizable if and only if 𝑝 =
∏(𝑡 −𝜆𝑖). There is a relationship

between the minimal polynomial and the Jordan form – if 𝑝𝑖 is the number of rows in
the largest Jordan block corresponding to eigenvalue 𝜆𝑖 , the minimal polynomial of 𝑇 is∏

𝑖(𝑡 − 𝜆)𝑝𝑖
𝑖

.
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