
Machine Learning

based on The Elements of Statistical Learning by Hastie, Tibshirani, and Friedman

Kanyes Thaker

Last updated: November 29, 2023

Note to the Reader

These notes provide a high-level summarization of Hastie et al’s seminal text The Elements
of Statistical Learning, which ranks among the most highly regarded classical machine
learning references. These notes are not a comprehensive summary – rather they aim
to distill information that is most widely applicable, most widely practical, or is most
widely transferable to other fields of science and engineering. Certain topics which are
more thoughtfully dealt with in dedicated texts (like Daphne Koller’s text on PGMs or
Ian Goodfellow’s on neural networks, or even Bishop’s text for a more comprehensive
approach to Bayesian statistics) are left to those texts, and only briefly touched on here.
The most attention is given to the fundamental chapters on linear regressors, linear
classifiers, and model selection and evaluation, as per the authors’ recommendation.

1

Contents

Supervised Learning 4
1.1 Least Squares and Nearest Neighbors . 4

Linear Models 6
2.1 Linear Regression . 6
2.2 Shrinkage . 7

2.2.1 Ridge Regression . 7
2.2.2 Lasso . 8
2.2.3 A Brief Comparison . 8

2.3 Linear Classification . 9
2.3.1 Linear Discriminant Analysis . 9
2.3.2 Logistic Regression . 11
2.3.3 A Brief Comparison . 12
2.3.4 Separating Hyperplanes . 12

Basis Expansions and Regularization 13

Kernel Methods 14
4.1 Kernel Density Estimation . 15

4.1.1 Naive Bayes Classifier . 15
4.1.2 Radial Basis Functions . 15

Model Selection 16
5.1 Bias and Variance . 16
5.2 Bayesian Information Criterion . 17

5.2.1 Vapnik-Chervonekis Dimension 18
5.3 Cross-Validation . 18
5.4 Bootstrap . 19

Model Inference and EM 19
6.1 Expectation-Maximization . 20
6.2 Gibbs Sampling . 21

Additive Models 21
7.1 Hierarchical Mixture of Experts (HME) 22

Boosting 23
8.1 Boosting Trees . 24
8.2 Gradient Boosting . 24

Neural Networks 24

Support Vector Machines 26

Unsupervised Learning 27
11.1 Association Mining . 27

2

Machine Learning Contents

11.2 Cluster Analysis . 28
11.2.1 𝐾-means . 28

11.3 Hierarchical Clustering . 29
11.4 Principal Components . 30
11.5 Spectral Clustering . 30
11.6 Non-negative Matrix Factorization . 31

Random Forests 31

Graphical Models 32

3

Machine Learning Supervised Learning

※ Supervised Learning

The machine learning problem is one of interpreting patterns in data. A model (or
learner) attempts to determine some output (either a continuous quantity (which we
deem a regression problem) or a categorical variable (classification)) based on a set of
available examples (training data), where each example has multiple different attributes
(features) that the learner may learn from. If the examples come with a set of predefined
outputs that the learner may observe, we say that the learner is supervised – if the learner
must make sense of the data without these labeled outputs, it is unsupervised. Here
we build a foundation on the supervised approach.

At a high level, the goal of the learning task is, given an input vector x, make a good
prediction of the output 𝑦, where we denote the prediction as �̂� = 𝑓 (x). We suppose that
we have available to us a set of training measurements (x𝑖 , 𝑦𝑖) where x𝑖 is an example
and 𝑦𝑖 is the associated output label.

1.1 Least Squares and Nearest Neighbors

The simplest construction of 𝑓 is that of a linear model, where we assume there is some
linear relationship between the output and input, i.e. �̂� = 𝛽0 +

∑
x𝑖𝛽𝑖 (equivalently,

�̂� = x⊤𝛽). The collection of (x, �̂�) form an affine set in the 𝑝 + 1 dimensional input-
output space. We can then determine optimal values for 𝛽 by minimizing the squared
error (difference between prediction and target) – a method aptly dubbed least squares,
which admits a closed-form solution through some simple calculus:

𝛽∗ = arg min
𝛽

𝑁∑
𝑖=1
(𝑦𝑖 − x⊤𝑖 𝛽)

2 = arg min
𝛽
∥y − X⊤𝛽∥22.

Ordinary Least Squares Solution

𝛽∗ = (X⊤X)−1X⊤y.

In the event that we wish to classify a point as one of two classes, we can draw a decision
boundary that assigns class 1 to the point if x⊤𝛽∗ > 0.5 and class 0 otherwise. The value
that we make our decision on is the decision threshold.

In most cases, the data we have will not be cleanly linearly separable; the data in each
class will overlap. Then we can make one of two assumptions:

1. The underlying distribution for each class is a single unimodal 𝑝-variate distribu-
tion with high variance. The errors are simply due to the variance in each class.
Our linear assumption is good, and we can be confident that this is the "best we
can do."

4

Machine Learning 1.1 Least Squares and Nearest Neighbors

2. The underlying distribution for each class is actually a mixture of Gaussians, and
the errors are not due to variance, but because the assumption of linearity we
made earlier is actually incorrect.

The 𝑘-nearest-neighbors (𝑘NN) method can help with the second scenario. In this
scenario, we take an input x, and find the 𝑘 closest points x𝑖 ("closest" meaning some
metric, i.e. the Euclidean distance) in the training data, and average the corresponding
𝑘 𝑦𝑖’s:

�̂� =
1
𝑘

∑
x𝑖∈𝒩𝑘 (x)

𝑦𝑖 .

The linear decision boundary is smooth and stable, but relies on the assumption that
a linear boundary is appropriate. It has low variance and high bias. On the other
hand, 𝑘NN is highly unstable, but makes no assumptions; it has high variance and low
bias. Variance can be thought of as a measure of "how much our model is influenced
by the actual data" while bias can be thought of as a measure of "how much our model
is influenced by simplifying assumptions." High-bias models tend to underfit and lose
granularity while high-variance models tend to overfit and capture noise inherent in
the data. All models have some complexity parameter that helps manage the tradeoff
between bias and variance, and understanding this is key in designing machine learning
systems.

These ideas presented so far can be encapsulated more broadly by statistical decision
theory. Given an 𝑛-dimensional input vector x and a real-valued output 𝑦, we seek a
function 𝑓 (x) (an estimator) that can approximate 𝑦. We do so by minimizing a loss
function 𝐿(𝑌, 𝑓 (𝑋)) that quantifies how good our prediction is (here we substitute the
random variables 𝑌 and 𝑋).

The minimizer of the expected square errorE[(𝑌−𝑐)2] is 𝑐 = E[𝑌]. In our case, where we
have additional information in the form of the data 𝑋, we can iterate the expectations
and minimize E𝑋E𝑌 |𝑋[(𝑌 − 𝑓 (𝑋))2 |𝑋] pointwise, which gives us a final estimator of
𝑓 (𝑋) = E[𝑌 |𝑋]. This is known as the regression function.

Both least squares and 𝑘NN approximate the conditional expectation (𝑘NN does this
directly, while least squares uses a linear model). 𝑘NN assumes that 𝑓 (x) can be
approximated by a function that is locally constant, while least squares assumes that
𝑓 (x) is globally linear. While each assumption has its drawbacks, the majority of methods
discussed here fall in the latter category.

The Curse of Dimensionality

We might intuit that nearest-neighbors methods are always optimal, since we can
always collect a sufficient amount of data to find an approximate nearest neighbor.

5

Machine Learning Linear Models

This argument begins to fall apart in higher and higher dimensions, where we
need exponentially more data in order to have a representative sample of all
possible combinations of features. This problem is among a series of difficulties
we encounter in high-dimensional spaces, and is commonly dubbed the curse of
dimensionality. Using models with strict assumptions (like least squares) about
the structure of 𝑓 can help alleviate this problem. But these models fail horribly
if the assumptions are wrong.

One common framing of the prediction problem is to represent the data as the model 𝑦 =

𝑓 (x)+𝜀 where 𝜀 are zero-mean, i.i.d. values independent of x. This additive error model
closely resembles many real-world systems, where there is no strictly deterministic
relationship between the output and input.

※ Linear Models

A linear model assumes the regression function E[𝑌 |𝑋] is linear. These models are
simple but incredibly powerful. Here we explore linear models with applications to
regression (continuous output) and classification (discrete output).

2.1 Linear Regression

A linear model assumes that the target distribution is a linear function of its parameters,
𝑦 = x⊤𝛽. As discussed before, the popular ordinary least squares (OLS) estimation
method minimizes the residual sum-of-squares error

∑(𝑦𝑖 − x⊤
𝑖
𝛽) over the training set

(X, y). The estimator is the projection ŷ onto the subspace ofR𝑛 spanned by the columns
of X.

Solving the resulting optimization problem yields the closed-form ordinary least squares
solution:

�̂� = arg min
𝛽
∥y − X𝛽∥22 = arg min

𝛽
𝛽⊤X⊤X𝛽 − 2y⊤X𝛽 = (X⊤X)−1X⊤y

The predicted values are �̂� = X�̂�.

OLS admits multiple solutions if X is rank-deficient (multicollinearity), in which case
we must eliminate columns or rows. Here are some other assumptions we make OLS
relies on an assumption of exogeneity, wherein the error term is fully independent of
X; homoskedasticity, that all error terms 𝜀 have identical variance; there is no autocor-
relation between error terms (Cov(𝜀𝑖 , 𝜀𝑗) = 0).

Suppose we have an estimate �̂� = a⊤�̂� using our OLS solution �̂�. �̂� is an unbiased
estimator since �̂� = a⊤𝛽. Using the triangle inequality, we can show that any other

6

Machine Learning 2.2 Shrinkage

unbiased estimator 𝜗 wil lhave Var(�̂�) ≤ Var(𝜗) – this says that the OLS estimator is the
unbiased estimator of least variance (this is the Gauss-Markov theorem).

In a multi-label case, where we expect each row in X to result in 𝐾 possible predictions,
we replace y in our least squares formulation with the 𝑁 × 𝐾 matrix Y. Other than this,
the formulation is similar – our loss function is then trace[(Y−XB)⊤(Y−XB)]. This yields
the same solution of B = (X⊤X)−1X⊤Y. This can be decomposed into K independent
binary classifiers on each of the target classes.

2.2 Shrinkage

Least squares suffers from poor prediction accuracy (low bias, high variance), since there
may be a lot of features (dimensions) that are difficult to interpret. We can attempt to
remedy this problem by reducing the number of features that our model is learning. We
can do this discretely, by selecting only the most influential features greedily (known as
subset methods). Discrete methods, however, are prone to high variance – instead, we
may opt for methods which will shrink the influence of features continuously, thereby
reducing variability.

2.2.1 Ridge Regression

One popular shrinkage method is ridge regression, which shrinks our 𝛽 coefficients
towards zero by penalizing their magnitude (measured by their square, 𝛽2

𝑖
, or for a

vector ∥𝛽∥22. In the land of neural networks this is known as weight decay. We might do
this when we have highly correlated feature, where OLS might assign a hugely positive
coefficient for one feature and balance it out with a hugely negative coefficient on its
cousin. The ridge solution mitigates this by penalizing large-magnitude features more
than small-magnitude features.

Ridge Regression

The ridge regression optimization problem is then

�̂� = arg max
𝛽
∥y − X𝛽∥22 + 𝜆∥𝛽∥22 = (X⊤X + 𝜆I)−1X⊤y.

Here 𝜆 is a parameter we set before we fit the model. Such a parameter that is
manually set before the model is fit is known as a hyperparameter.

Since 𝜆 > 0, notice that even if X⊤X is singular, (X⊤X + 𝜆I) must be nonsingular, the
ridge regression minimizer is always unique (the objective function is strictly convex).

A Bayesian understanding of ridge regression models it as the mode of the posterior
distribution with a Gaussian prior. If y|X, 𝛽 ∼ 𝒩(X𝛽, 𝜎2I), and we assume 𝛽 ∼ 𝒩(0, 𝜏2)

7

Machine Learning 2.2 Shrinkage

then
𝑃(𝛽 |y,X) ∝ 𝑃(𝛽)𝑃(y|𝛽,X) = exp

{
− 1

2𝜎2

(
∥y − X𝛽∥22 +

𝜎2

𝜏2 ∥𝛽∥
2
2.

)}
.

Maximizing this posterior (known as maximum a posteriori or MAP) – or equivalently,
minimizing the negative log of the posterior – gives us the ridge regression solution.

Ridge regression can also be understood through the singular value decomposition
X = UDV⊤. For an 𝑛 ×𝑚 matrix X with rank 𝑝, U and V are 𝑛 × 𝑝 and 𝑝 ×𝑚 orthogonal
matrices, where the columns of U span the column space of X, and the columns of V
span the row space. D is a 𝑝 × 𝑝 diagonal matrix whose entries are listed in order of
descending magnitude, known as the singular values. Using the singular values,

X�̂�𝑟𝑖𝑑𝑔𝑒 = X(𝑋⊤X + 𝜆I)−1X⊤y = UD(D2 + 𝜆I)−1DU⊤y =
∑

u𝑗
𝑑2
𝑗

𝑑2
𝑗
+ 𝜆

u⊤𝑗 y.

Compare this to the OLS estimator, where X�̂�𝑂𝐿𝑆 = UU⊤y – we see that each coordinate
of y, represented in the basis U, is shrunk by a factor of 𝑑2

𝑗
/(𝑑2

𝑗
+ 𝜆). This is significant,

because the SVD is also associated with the principal components of X. The sample
covariance matrix is 1

𝑁X⊤X ∝ VD2V⊤, the eigendecomposition of X⊤X. The eigenvec-

tors v𝑗 are then known as principal components, and since Var(Xv𝑖) =
𝑑2
𝑖

𝑁 , the principal
component v1 represents the direction of maximum variance (as do the rest of the v𝑖). So
all this means that 𝑑2

𝑗
/(𝑑2

𝑗
+ 𝜆) is smaller when 𝑑 𝑗 is smaller – meaning ridge regression

shrinks weights around the directions of least variance the most. This is a reasonable
assumption since we expect the longest directions to be the most informative.

2.2.2 Lasso

The lasso method is similar to the ridge regression formulation, but substitutes ℓ -2 norm
penalty for an ℓ -1 norm one, so we attempt to find �̂�𝑙𝑎𝑠𝑠𝑜 = arg min𝛽 ∥y−X𝛽∥22 +𝜆

∑ |𝛽 𝑗 |.
The constraint is nonlinear in y, and as a result lasso admits no closed-form solution,
and its objective function is not differentiable everywhere due to the sharp corners of
|𝛽 𝑗 |. However, while ridge regression continuously shrinks all coefficients towards zero,
lasso will set some coefficients as exactly zero, which induces sparsity. While we will
not illustrate this here, this is equivalent to evaluating the posterior distribution with a
Laplace distribution prior on 𝛽. We sometimes combine the ridge and lasso regularizers
by linearly interpolating between them, i.e. argmin𝛽 ∥y − X⊤𝛽∥22 + 𝜆∥𝛽∥22 + (1 − 𝜆)∥𝛽∥1,
known as elastic net.

2.2.3 A Brief Comparison

Ridge regression performs a proportional weight shrinkage towards zero. Lasso shrinks
coefficients by 𝜆, truncating them at zero (soft thresholding). Best-subset selection
selects only the top 𝑀 largest coefficients (hard thresholding). Really, all these three

8

Machine Learning 2.3 Linear Classification

methods are Bayesian estimates with different priors – but all of them correspond to the
maximum of the posterior distribution.

2.3 Linear Classification

The classification problem consists of generating a predictor𝐺(𝑥) that outputs a member
of a finite output set 𝒢. We do this by splitting the input space into regions which define
the output classes. In particular, we examine linear decision boundaries that define
these regions.

One way to do this is to extend the idea in §1.1, where we train 𝑂(𝑘2) linear-regression-
based classifiers on each pair of classes, and classify a datapoint based on the class that
gets the most votes from all the classifiers (one-versus-one). Alternatively we could
train 𝑂(𝑘) binary classifiers where we select one class as the "positive" class and cast
all others as "negative" (one-versus-rest). However, linear regression models are hard
to interpret for classification tasks, since they don’t neatly map to probabilities. Errors
with these models are heteroscedastic.

A linear discriminant function 𝛿𝑘 is a linear function that returns a score for class
𝑘 given a data point x. A linear classifier would emit the class arg max𝑘 𝛿𝑘 . Models
that model the posterior probability 𝑃(𝐺 = 𝑘 |𝑋) fall into this same category. More
loosely, the decision boundary is linear if a monotone transformation (a link function)
of 𝛿𝑘/posterior probability is linear.

The logit function is an extremely important example. The logit or log-odds function
logit(𝑝) : [0, 1] → R = log(𝑝/1− 𝑝) is a monotonic function that is easily interpretable as
a ratio of probabilities. Formally, it is the inverse of the CDF of the logistic distribution.
The next two examples (LDA and logistic regression) aim for linear logits. In the section
on logistic regression we will see why the logit function in particular is useful over any
other choice.

2.3.1 Linear Discriminant Analysis

We know that optimal classification is achieved through class posteriors 𝑃(𝐺 |𝑋). Let’s
model the class-conditional density as 𝑃(𝑋 |𝐺 = 𝑘) = 𝑓𝑘(x) and the class prior proba-
bilities as 𝑃(𝐺 = 𝑘) = 𝜋𝑘 . We can estimate the full class prior from the law of total
probability as 𝑃(𝑋) = ∑

𝑘 𝑃(𝑋, 𝐺 = 𝑘) = ∑
𝑘 𝑃(𝑋 |𝐺 = 𝑘)𝑃(𝐺 = 𝑘) = ∑

𝑘 𝑓𝑘(x)𝜋𝑘 .

𝑃(𝐺 = 𝑘 |𝑋 = 𝑥) =
𝑓𝑘(x)𝜋𝑘∑
ℓ 𝑓ℓ (x)𝜋ℓ

.

Linear discriminant analysis (LDA) is the case where we model the class-conditional
density as a multivariate Gaussian with shared covariance Σ:

𝑓𝑘(x) =
1

(2𝜋)𝑝/2 |Σ|1/2
exp

{
−1

2 (x − 𝜇𝑘)
⊤Σ−1(x − 𝜇𝑘)

}
.

9

Machine Learning 2.3 Linear Classification

So the log-ratio of the posteriors is a linear equation in x:

log 𝑃(𝐺 = 𝑘 |X = x)
𝑃(𝐺 = ℓ |X = x) ∝ log 𝜋𝑘

𝜋𝑙
− 1

2 (𝜇𝑘 − 𝜇ℓ)
⊤Σ−1(𝜇𝑘 − 𝜇ℓ) + x⊤Σ−1(𝜇𝑘 − 𝜇ℓ),

The linear discriminant functions are then log 𝑓𝑘(x) (up to proportionality). So in LDA,
we are trying to get linear log-odds by modeling the joint distribution 𝑃(𝑋, 𝐺 = 𝑘)with
𝑓𝑘(x), which we assume to be Gaussian.

𝛿𝑘 = x⊤Σ−1𝜇𝑘 −
1
2𝜇
⊤
𝑘 Σ
−1𝜇𝑘 + log𝜋𝑘 ,

and 𝐺(x) = argmax𝑘 𝛿𝑘 . In practice, we do not know the parameters 𝜇𝑘 , Σ of the
Gaussians, so we estimate them from our training data.

If the Σ𝑘 are not all equivalent, our terms do not cancel as nicely, and we instead get
quadratic discriminant analysis (QDA), with functions

𝛿𝑘(𝑥) = −
1
2 log |Σ𝑘 | −

1
2 (x − 𝜇𝑘)

⊤Σ−1
𝑘
(x − 𝜇𝑘) + log𝜋𝑘 .

QDA and LDA tend to provide similar estimates. QDA is more relaxed but suffers from
an explosion in the number of parameters. LDA and QDA perform exceptionally well on
a diverse slate of classification tasks, since Gaussian estimates are stable, and (even with
high bias) maintain low variance. We can regularize QDA by shrinking the covariances
to be somewhere closer to fully uniform (as in LDA). To do this, we use a regularized
covariance matrix Σ̂𝑘(𝛼) = 𝛼Σ̂𝑘 + (1 − 𝛼)Σ̂ where Σ̂ is the "universal" LDA covariance.

To make computations easier, we can diagonalizeΣ𝑘 = U𝑘D𝑘U𝑇
𝑘

X∗. Then we can sphere
the data as X∗ = D−1/2U𝑇X (i.e. we center and scale the data so the covariance of the
transformed data is I). Then the discrimnant functions amount to finding the closest
centroid to the data point in the sphered data space, mod 𝜋𝑘 .

Since there are 𝐾 centroids in the 𝑝-dimensional feature space, all centroids must lie in
a 𝐾 − 1 affine subspace of R𝑝 . The closest centroid can be determined exclusively within
this subspace; LDA is then a type of dimensionality reduction. To make separating
the centroids easier, we then identify the top principal components to maximize the
variance between them.

1. Compute the set of 𝐾 centroids M (𝐾 × 𝑝) from the training data

2. Compute the shared within-class covariance W

3. Compute M∗ = MW− 1
2 , "sphering" M

4. Compute B∗, the covariance matrix of M∗, where B is the between-class covariance.
The eigenvectors v∗

ℓ
of B∗ are then the coordinates of the optimal subspaces.

10

Machine Learning 2.3 Linear Classification

2.3.2 Logistic Regression

Here we examine a formulation which directly attempts to model the posterior distri-
bution without the joint distribution. The general idea is this; we want to transform
our linear model 𝛽⊤x into meaningful and interpretable probabilities. This transforma-
tion should be symmetric (class assignments are arbitrary), should be monotonic, have
continuous derivatives, and saturate at ±∞. Additionally, the inverse transformation
from probabilities back into a linear function should have some logical interpretation as
a “decision boundary."

The logit function, along with its inverse the logistic sigmoid satisfy all these require-
ments. While they are not the only functions that do, their simple formulation have
made them a wildly popular choice for this problem. The logit function is easily in-
terpretable as a ratio of probabilities (intuitively mapping to the concept of a "decision
boundary"). The logistic sigmoid function is the CDF of the logistic distribution; it is
symmetric about zero, has continuous derivatives, and (being a CDF) necessarily has a
codomain of [0, 1] and saturates at ±∞. An alternative combination would be the probit
function and Gaussian CDF Φ, but the probit function is much less interpretable as a
ratio of probabilities.

The logistic regression model consists of 𝐾 − 1 logit transformations of form

log 𝑃(𝐺 = 𝑘 |𝑋 = 𝑥)
𝑃(𝐺 = 𝐾 |𝑋 = 𝑥) = 𝛽⊤𝑘 x.

Based on the above discussion, individual posteriors can be written as follows. You can
confirm that these functional forms behave as desired.

𝑃(𝐺 = 𝑘 |𝑋 = 𝑥) =
exp(𝛽⊤

𝑘
x)

1 +∑ℓ exp(𝛽⊤
ℓ

x) 𝑃(𝐺 = 𝐾 |𝑋 = 𝑥) = 1
1 +∑ℓ exp(𝛽⊤

ℓ
x)

We will use 𝑃(𝐺 = 𝑘 |𝑋 = 𝑥) = 𝑝𝑘(𝑥;𝜗) as shorthand.

We normally fit the logistic regression model using the maximum (log) likelihood, with
the conditional likelihood of𝐺 given𝑋 𝑃(𝐺 |𝑋). In the binary case, 𝑝0(𝑥;𝜗) = 1−𝑝1(𝑥;𝜗),
and the log-likelihood can be written as

Binary Cross-Entropy Loss

ℓ (𝛽) =
𝑁∑
𝑖=1

𝑦𝑖 log 𝑝(𝑥𝑖 ; 𝛽) + (1 − 𝑦𝑖) log(1 − 𝑝(𝑥𝑖 ; 𝛽))

Maximizing the log-likelihood amounts to minimizing the negative log-likelihood. Since
the negative log-likelihood takes the form of the cross-entropy between two distributions
𝐻(𝑝; 𝑞) = −∑ 𝑝 log 𝑞, we call this the binary cross-entropy loss. As usual, we can set

11

Machine Learning 2.3 Linear Classification

the derivative of the loss to zero to find the optimum.

ℓ (𝛽) =
𝑁∑
𝑖=1

𝑦𝑖𝛽
⊤x𝑖 − log(1 + 𝑒𝛽⊤x𝑖) =⇒ 𝜕ℓ (𝛽)

𝜕𝛽
=
∑

x𝑖(𝑦𝑖 − 𝑝(x𝑖 ;𝜗)) = X⊤(y − p),

which is an equation nonlinear in 𝛽. Since there is no closed-form solution, we may use
a numerical method (such as Newton’s method) to find the zeros:

𝛽𝑛𝑒𝑤 ← 𝛽𝑜𝑙𝑑 −
(
𝜕2ℓ (𝛽)
𝜕𝛽𝜕𝛽⊤

)−1
𝜕ℓ (𝛽)
𝜕𝛽

,
𝜕2ℓ (𝛽)
𝜕𝛽𝜕𝛽⊤

=
∑

x𝑖x⊤𝑖 𝑝(x𝑖 ; 𝛽)(1 − 𝑝(x𝑖 ; 𝛽)) = −X⊤WX

where W is a diagonal matrix with elements 𝑝(x𝑖 ; 𝛽)(1 − 𝑝(x𝑖 ; 𝛽)). The update rule can
be simplified as

𝛽𝑛𝑒𝑤 ← 𝛽𝑜𝑙𝑑+(X⊤WX)−1X⊤(y−p) = (X⊤WX)−1X⊤W(X𝛽𝑜𝑙𝑑+W−1(y−p)) = (X⊤WX)−1X⊤Wz

This variant of least squares, where there is a weighting parameter that is modified on
each iteration, is called iteratively reweighted least squares (IRLS).

2.3.3 A Brief Comparison

So when do we use LDA versus logistic regression? Both LDA and logistic regression
yield log-odds linear in x. However, they estimate their coefficients differently. Logistic
regression estimates 𝑃(𝐺 |𝑋)without making any assumptions about 𝑃(𝑋), instead max-
imizing the conditional likelihoods 𝑃(𝐺 = 𝑘 |𝑋). Meanwhile, LDA maximizes the full
log-likelihood using the joint density 𝑃(𝑋, 𝐺 = 𝑘) = 𝜑(𝑋;𝜇𝑘 ,Σ)𝜋𝑘 . This also involves
the marginal density 𝑃(𝑋), which we assume to be a Gaussian mixture.

The Gaussian assumption in LDA allows us to estimate parameters with lower variance;
if the data is actually Gaussian, modeling the joint density (a generative model) re-
quires 30% less data for the same performance as just modeling the conditional density
(discriminative).

However, outliers (which logistic regression down-weights) will contribute to the com-
mon covariance matrix used in LDA. Forcing us to use this assumption on the marginal
distribution means that LDA is always well-defined where logistic regression may not
be, such as in a case where the data is completely linearly separable. In practice, logistic
regression is typically a safer and more robust classifier than LDA, as it requires fewer
assumptions – but these models generally perform very similarly.

2.3.4 Separating Hyperplanes

Separating hyperplane classifiers explicitly try to split the data into different classes as
well as possible, making no attempt to model the actual data. Classifiers that compute
linear combinations of input features and return a sign +/− are called perceptrons.

12

Machine Learning Basis Expansions and Regularization

The Rosenblatt perceptron learning algorithm tries to find a separating hyperplane by
minimizing the distance of misclassified points to that boundary. It aims to minimize
the error incurred by a misclassified response:

𝐷(𝛽) = −
∑
𝑖∈ℳ

𝑦𝑖(x⊤𝑖 𝛽)

where ℳ is the set of misclassified points. Correctly classified points incur no loss.
This loss function has continuous (linear) gradients, as ∇𝛽𝐷(𝛽) = −

∑
𝑖∈ℳ 𝑦𝑖x𝑖 . This

piecewise-linear function is minimized using stochastic gradient descent, meaning
instead of computing the sum of gradients over all observations and then taking a step,
we take a step after each individual observation. If the classes are linearly separable, this
process is guaranteed to converge in a finite number of steps, but there may be infinitely
many solutions depending on the initial conditions. For non-linearly separable data,
the algorithm will not converge.

※ Basis Expansions and Regularization

It is unlikely that the true relationship between X and Y is linear. This section moves
beyond linearity. In particular, we can introduce a series of 𝑀 transforms of X (called
basis functions), denoted ℎ𝑚(X), and fit a linear model in the transformed space, i.e.
𝑓 (X) = ∑𝑀

𝑚=1 𝛽𝑚ℎ𝑚(X). For example, we can have ℎ𝑖 , 𝑗(X) = X𝑖X𝑗 as a way to model a
quadratic relationship between X and y. We can likewise use the logarithm, square root,
or any other number of basis functions.

In particular, polynomial basis functions are valuable because they can locally approx-
imate many functions via the Taylor series. However, the number of basis functions
explodes in the degree of the polynomial, so we typically split the domain into discrete
intervals and fit separate low-degree polynomials to each interval.

Naturally, there will be discontinuities at the boundaries (knots) between the intervals.
To address this, we might want to add continuity conditions at the knots. In particular,
we want continuity up until the 2nd derivative, the point at which the human eye will
not notice the knot locations. As such, we will often fit cubic functions, known as cubic
splines. For the second derivative in particular, we can control variance around the knot
locations by ensuring that the second derivative is zero at knot points (natural cubic
splines).

We can determine the optimal knot locations by finding the interpolating function that
minimizes the penalized residual sum-of-squares:

𝑅𝑆𝑆(𝑓 ,𝜆) =
𝑁∑
𝑖=1
(𝑦𝑖 − 𝑓 (𝑥𝑖)2) + 𝜆

∫
𝑓 ′′(𝑡)2𝑑𝑡,

13

Machine Learning Kernel Methods

where 𝜆 = 0 allows any function to be used while 𝜆 = ∞ corresponds to simple least
squares (since no curvature can be tolerated). This is known as smoothing spline inter-
polation. For a dataset with𝑁 terms, the above regularizer has a solution corresponding
to a natural cubic spline with knots at all unique values of x. While this may seem too
loose, with 𝑂(𝑁) parameters, the penalty term 𝜆 shrinks the overall function towards
linear.

※ Kernel Methods

The general idea of this section is to estimate the regression function 𝑓 (X) by making a
local estimation using a simple model for each query point x0. This local model is fitted
using a neighborhood of points close to x0, where points further from x0 are weighted
based on a weighting function (a kernel) 𝐾𝜆(x0 , x𝑖). The parameter 𝜆 is the only one
determined from the training set, and denotes the width of the neighborhood (the
kernel’s bandwidth). A simple example is the 𝑘−nearest neighbors algorithm, where
a query point receives a value equal to the average of the 𝑘 closest points in squared
distance.

The 𝑘-nearest neighbors average function is piecewise-constant and hence discontinu-
ous. Alternatively, we can use a kernel function to assign weights that decay as we stray
further from the target point, and then factor that kernel function into our average. A
popular choice is the following:

Nadaraya-Watson Kernel-weighted Average

𝑓 (x0) =
∑
𝐾𝜆(x0 , x𝑖)𝑦𝑖∑
𝐾𝜆(x0 , x𝑖)

, 𝐾𝜆(x0 , x) = 𝐷

(
|x − x0 |
ℎ𝜆(x0)

)
.

The function ℎ𝜆 is a window function that changes the width of the kernel depending
on x0. When ℎ𝜆 is constant, we say we have a metric window width. Methods where the
bandwidth is not fixed are known as adaptive or variable kernel methods, and can be
quite powerful. For nearest-neighbor windows, where the bandwidth depends on the
density of points in the neighborhood, we would like a kernel with compact support.
The Epanechikov kernel is an oft-used kernel with compact support; the Gaussian
density kernel is a commonly used kernel with non-compact support.

So with our new kernel-weighted average we have avoided the discontinuities of the
nearest-neighbors moving average – however, these methods issues at boundaries where
our "neighborhoods" are less well-behaved; this can introduce bias to our model. Instead
of simply taking an average of the points in the neighborhood, we can instead fit a locally
weighted linear regression to the points in the neighborhood, where the weights are
the kernel weights as before. The combined weights of the kernel and regression are

14

Machine Learning 4.1 Kernel Density Estimation

known as the equivalent kernel. Local linear regression automatically modifies the
kernel to correct for bias up to the first order – automatic kernel carpentry. We can also
keep going, and fit higher and higher order polynomials locally; but linear fits are most
reliable due to their behavior at boundaries.

4.1 Kernel Density Estimation

Kernel density estimation is an older unsupervised technique that lends itself well to
local classification. As before, the local estimate is done via an average within a metric
neighborhood, a la 𝑓X(x0) = #x𝑖∈𝒩(x0)

𝑁𝜆 . As before, we typically add a weighting kernel
to retrieve what is known as the Parzen estimate. the Parzen window usually uses
some probability distribution 𝜑𝜆(x𝑖 − x0) as the kernel function, centered at x𝑖 − x0

parameterized by 𝜆. A common choice is the Gaussian kernel, in which 𝜆 represents
the standard deviation:

𝑓X(x) =
1
𝑁

𝑁∑
𝑖=1

𝜑𝜆(x𝑖 − x0) =
1

𝑁(2𝜆2𝜋)𝑝/2
𝑁∑
𝑖=1

𝑒−
1
2 (∥x𝑖−x0∥/𝜆)2 .

We can use this for classification, for class priors 𝜋 𝑗 , by using Bayes’ theorem:

�̂�(𝐺 = 𝑗 |𝑋 = 𝑥0) =
�̂� 𝑗 𝑓𝑗(x0)∑
�̂�𝑘 𝑓𝑘(x0)

.

4.1.1 Naive Bayes Classifier

The naive Bayes model is good in high dimensional spaces where modeling the density
directly is inefficient. Naive Bayes assumes that, for a class 𝐺 = 𝑗, the features X𝑘 are
independent, so

𝑓𝑗(X) =
𝑝∏
𝑘=1

𝑓𝑗𝑘(X𝑘).

The individual class-conditional marginal densities 𝑓𝑗𝑘(X𝑘) can be estimated indepen-
dently using one-dimensional kernel density estimates, such as the Gaussian Parzen
window estimate above. This is a rather strong assumption, but the resultant classifier
performs suprisingly well, usually because even if the individual class densities are
heavily biased, the posterior may not be. We can derive the decision boundary via the
logit transform, so

log 𝑃(𝐺 = ℓ |𝑋)
𝑃(𝐺 = 𝐽 |𝑋) =

𝜋ℓ 𝑓ℓ (X)
𝜋𝐽 𝑓𝐽(X)

= log 𝜋ℓ
𝜋𝐽
+

𝑝∑
𝑘=1

𝑓ℓ 𝑘(X𝑘)
𝑓𝐽𝑘(X𝑘)

.

4.1.2 Radial Basis Functions

In the previous section we discussed modeling non-linear relationships through basis
functions, some of which are defined locally (such as in the case of splines). Kernel

15

Machine Learning Model Selection

methods are flexible because the fit simple models in a region local to x0. Radial basis
functions combine these ideas, where the kernel functions 𝐾𝜆(𝜉, x) are treated as basis
functions, indexed by a scale parameter 𝜆 and a location (prototype) parameter 𝜉. Then
our fitting function becomes

𝑓 (X) =
∑

𝐾𝜆𝑗 (𝜉𝑗 , x)𝛽 𝑗 .

We commonly use the Gaussian kernel here, again with 𝜉𝑗 as the mean and 𝜆 𝑗 as the
standard deviation. We can learn these parameters, along with the weights 𝛽 𝑗 , with
linear regression, minimizing over all three; this is known as an RBF network, an alter-
native to sigmoidal neural networks; it can be solved through nonconvex optimization,
similar to neural networks. We could alternatively fit the kernel parameters 𝜉,𝜆 first,
and then optimize 𝛽 separately, by attempting to model the data X with a Gaussian
mixture directly. While we may also consider simplifying by holding 𝜆 = 𝜆 𝑗 fixed, this
might lead to regions of little support (holes).

※ Model Selection

In practice, we evaluate machine learning models based on their ability to generalize
to new or unseen data. This section discusses ways of evaluating and interpreting
generalization.

5.1 Bias and Variance

Assume some model minimizing a loss function 𝐿(Y, 𝑓 (X)). For a test set of data points
denoted (X,Y), and a model trained over a training set 𝜏, the test error is the average
of the loss function evaluated at each point in the test set, 𝐸𝑟𝑟𝜏 = E[𝐿(Y, 𝑓 (X)|𝜏]. A
related quantity is the expected test error E[𝐸𝑟𝑟𝜏], the average over all training sets. The
training error is the average loss over the training sample itself.

As our model increases in complexity, it is more able to fit to complex underlying struc-
tures in the training data (variance increases). Simpler models make more simplifying
assumptions (bias increases). There is some intermediate in the middle that is optimal.
Unfortunately, training error is generally not a good estimate of test error, since increas-
ing variance will always decrease the error on the training set, but may increase error
on the test set.

In general, there are two separate goals when it comes to estimating test error. The
first is model selection, the practice of comparing different models to find the best one.
The second is model assessment – having selected a best model, accurately estimating
its generalization powers on new data. With large datasets, a good pratice is to split
the data into uniformly partitions. A training set will be used to train each model, a
validation set will be used for model selection, and a test set will be used for model

16

Machine Learning 5.2 Bayesian Information Criterion

assessment. In this section we primarily explore situations where it may not be possible
to dedicate large sections of data entirely for validation or testing.

Recall that we often assume that Y = 𝑓 (X) + 𝜀, i.e. some pure function of the data plus
some irreducible error. For some fitting function 𝑓 (X), we then have the following:

Bias-Variance Decomposition

𝐸𝑟𝑟(x0) = E[(Y − 𝑓 (x0))2 |X = x0] = 𝜀2 + [E 𝑓 (x0) − 𝑓 (x0)]2 + E[𝑓 (x0) − E 𝑓 (x0)]2

= 𝜀2 + Bias(𝑓 (x0))2 + Var(𝑓 (x0)).

The bias measures how much the average of our estimate differs from the true mean, and
the variance is the expected squared deviation of the estimate about its mean. The bias
term itself can also be broken down into two quantities, the model bias (error between
the true function and the best linear approximation) and estimation bias (error between
the average estimate and the best linear approximation). In the OLS case, the estimation
bias is zero, and in regularized case the estimation bias is positive, and we trade it off for
decreased variance. In cases where the decrease in variance is greater than the square
of the estimation bias, the regularized fit will yield a lower overall error.

5.2 Bayesian Information Criterion

The training error is typically less than the test error. Remember that we typically think
of y as being random, as 𝑓 (X) + 𝜀. In addition to the training error, which captures the
error for the current training set, it’s also interesting to consider the average training error
over all possible values of y for our training set. This value is known as the in-sample
error. Since our model was fit to the y-values we observe, we naturally expect the
training error to be less than the in-sample error. The difference between these two is
known as the optimism – a measure of how much influence the target values we observe
have on the model, versus the underlying distribution that y belongs to. In other words,
it is a measure of how optimistic we are that our sampled training set will capture the
true data distribution. The average optimism over all training sets is denoted 𝜔; the
optimism is proportional to Cov(ŷ, y), where the proportionality constant depends on
the number of parameters (number of basis functions) 𝑑.

We rarely use the in-sample error in practice, and most modern literature considers the
training error and in-sample error interchangeable (which isn’t exactly true). Rather,
we might use some estimate instead. The Akaike information criterion (AIC) does
precisely this – the expected log likelihood penalized by the number of parameters:

𝐴𝐼𝐶 = −2E[log𝑃�̂�(𝑌)] = −
2
𝑁
E
[∑

log𝑃�̂�(𝑦𝑖)
]
+ 2 𝑑

𝑁
= − 2

𝑁
E[ℒ̂] + 2 𝑑

𝑁
.

17

Machine Learning 5.3 Cross-Validation

The objective is that the AIC curve can simulate the test error curve, so minimizing the
AIC will be a good way to find the number of parameters that would also minimize the
test error.

The Bayesian information criterion (BIC) is also applicable when the fitting is done
through maximizing a log-likelihood.

Bayesian Information Criterion (Schwarz Criterion)

𝐵𝐼𝐶 = −2ℒ̂ + (log𝑁)𝑑

The BIC is proportional to the AIC where the factor of 2 is replaced with log𝑁 . As
a result, BIC tends to penalize complex models more heavily. The BIC, however, is
motivated quite differently. The BIC represents the posterior probability distribution
𝑃(ℳ|Z), where Z is a training set andℳ is a candidate model. For a modelℳ𝑚 with
prior 𝑃(𝜗𝑚 |ℳ𝑚), the posterior is

𝑃(ℳ𝑚 |Z) =
∫

𝑃(Z|𝜗𝑚 ,ℳ𝑚)𝑃(𝜗𝑚 |ℳ𝑚)𝑑𝜗𝑚

(we typically assume the model prior is uniform). The posterior odds,𝑃(ℳ𝑚 |Z)/𝑃(ℳ𝑛 |Z)
can then be evaluated just from the ratio of the likelihoods 𝑃(Z|ℳ𝑚)/𝑃(Z|ℳ𝑛). The BIC
follows from an estimation of 𝑃(Z|ℳ𝑚) (details to important). The BIC can also be
formulated from an optimal coding viewpoint, in which case it is called the minimum
description length (MDL).

5.2.1 Vapnik-Chervonekis Dimension

The Vapnik-Chervonekis dimension (VC) gives a general measure of complexity for a
set of points, along with a bound on the optimism. The VC dimension of a class of
functions is the largest number of points that can be shattered by the members of the
class. A set of points can be shattered by a function if, no matter how we assign binary
labels to those points, the function can separate them. For example, a line in the plane
can always separate 3 points into two classes, no matter how the points are labeled – but
this is not true for 4 points, so the VC dimension of straight lines in the plane is 3. The
VC dimension is useful in producing probabilistic bounds for the test error.

5.3 Cross-Validation

The simplest method for estimating error is cross-validation. In an ideal case, we could
set aside a validation set for our data and use it to assess model performance, and
thereby calculate the error directly. Since data is often scarce, we can try to split the data
into 𝐾 equal-sized parts. We can then train each model 𝐾 times, training on 𝐾 − 1 parts
and validating on the one outstanding. Our prediction error is then the mean of the

18

Machine Learning 5.4 Bootstrap

individual errors for each training iteration. This is known as 𝑘-fold cross validation.
𝐾 = 5 and 𝐾 = 10 are commonly used values since they strike a good compromise
between bias and variance.

5.4 Bootstrap

The bootstrap is another method for estimating the expected prediction error. The
general idea is to train a model over a training set Z, and then generate 𝐵 randomly
sampled (with replacement) subsets from the training data with the same size as the
training set. We then can fit our model to each sample and estimate our error based on
how each sample’s model approximates the original. However, this is unstable, since
we are treating the original model as a test set, and the bootstrapped models share some
training data with the original model (leakage). Typically we will run some kind of
cross-validation on the bootstrapped samples, so that we only evaluate the bootstrap
predictions for a given data point using samples that did not contain that data point.
Bootstrap models can also be used for prediction; the act of creating a model by averaging
the predictions of several boostrapped models is called bagging.

※ Model Inference and EM

Most methods so far have fit models by minimizing a loss function via maximum
likelihood. This section generalizes the maximum likelihood approach.

Bootstrap methods in general use an ensemble of small models to simulate a large model.
Consider a fitting problem where our dataset is one-dimensional. We might use basis
functions or spline interpolation to fit a nonlinear model to this data with least squares,
as we have in the past. We could then construct a confidence interval based on the mean
error at each point. Alternatively, we could fit numerous (say, 200) fitting functions
over smaller subsets of the data using the bootstrap method. Then the 95% confidence
interval can be determined by finding the 5th smallest and 5th largest prediction at each
datapoint. These two methods yield surprisingly similar results.

We call the above idea nonparametric bootstrap because it uses the raw data to generate
the dataset for the bootstrapped model. This is in contrast to parametric boostrap,
where we generate the bootstrap training set by adding noise on top of the predicted
values. As the number of bootstrap samples goes to infinity, the boostrap confidence
interval will approach the least squares confidence intervals, so long as the model errors
are additive Gaussian. The parametric bootstrap does not agree with least squares in
general – rather, it agrees with maximum likelihood.

Recall that the maximum likelihood method typiccally assumes a probability function
𝑔𝜗(z𝑖) for our data that is parameterized by some 𝜗 (this is parametric maximum
likelihood). The likelihood function is the product of 𝑔𝜗(z𝑖) for all data points. For

19

Machine Learning 6.1 Expectation-Maximization

example, if we assume 𝑔 is Gaussian, then 𝜗 = (𝜇, 𝜎2). The log likelihood is the sum of
log 𝑔 for each z𝑖 . The bootstrap can be thought of as the computer implementation of
maximum likelihood. It lets us compute maximum likelihood estimates and error bars
when the formulas themselves may not be available.

The maximum likelihood approach takes a frequentist approach, wherein we take the
values we observe in the data at face value. As a result, they can be brittle – a maximum
likelihood model for fair coin flips that has a dataset of 3 heads will predict heads
ever after. Bayesian approaches attempt to encode some prior knowledge about the
world and allow the data to update the prior into a posterior distribution 𝑃(𝜗|Z). While
maximum likelihood estimates use the optimal �̂� to compute predictions, 𝑃(z𝑛𝑒𝑤 |�̂�), the
Bayesian approach uses the posterior:

𝑃(z𝑛𝑒𝑤 |Z) =
∫

𝑃(z𝑛𝑒𝑤 |𝜗)𝑃(𝜗|Z)𝑑𝜗.

6.1 Expectation-Maximization

Consider a dataset with two peaks (bimodal). A single Gaussian cannot be used to learn
such data. Instead we might choose to use two Gaussians in a mixture model, where
the two distributions 𝑌1 and 𝑌2 are mixed as 𝑌 = (1 − Δ)𝑌1 + Δ𝑌2. This is a generative
representation of the mixture.

It would be very difficult to directly fit such a model using log likelihood – we end
up with a tricky sum inside the log term. Instead, we could consider using our latent
(hidden) variables Δ. If Δ𝑖 = 1 then 𝑦𝑖 comes from the second model, and if Δ𝑖 = 0
then 𝑦𝑖 comes from the first. If we knew all the Δ𝑖’s, we could compute maximum
likelihood estimates for models 1 and 2 by exclusively taking those data with Δ𝑖 = 0 or
1, respectively.

Since we don’t know the actual values of Δ𝑖 , we can instead just use the expected value
𝛾𝑖 = E[Δ𝑖 |𝜗,Z] = 𝑃(Δ𝑖 = 1|𝜗,Z), known as the responsibility. Then we have an
algorithm that loops in two steps. The expectation step assigns responsibilities based
on the current estimates of the parameters of the model. The maximization step uses
those responsibilities to then recompute the model parameters. This is the expectation-
maximization (EM) algorithm. We repeat these steps until convergence. The above
is an illustrative example – the generalized EM algorithm expands the procedure to a
more general space of latent variables, but the overall idea remains the same. In the
GEM algorithm, we augment our observed data Z with latent (unobserved) data Z𝑚 .
We can then treat this as a joint maximization problem.

20

Machine Learning 6.2 Gibbs Sampling

6.2 Gibbs Sampling

Either through direct MAP modeling or the EM algorithm, we have a Bayesian model.
Now we would like to sample from the posterior so that we may make inferences about
its parameters. In general, it is difficult to compute the integral for the posterior directly.
We will often use a Markov chain Monte Carlo (MCMC) approach to posterior sampling
– in particular, we explore the Gibbs sampling procedure, closely related to EM.

In general, suppose we have 𝑘 random variables whose joint distribution we wish to
sample. Often times it is difficult to model the joint distribution directly, but it can be
simple to sample from the conditional distributions 𝑃(𝑈 𝑗 |𝑈1 , ..., 𝑈 𝑗−1 , 𝑈𝑗+1 , ..., 𝑈𝑘). The
Gibbs sampling procedure draws a sample from each of these distributions, for each
1 ≤ 𝑗 ≤ 𝑘, repeatedly until the distribution stabilizes, at which point we have a sample
from the joint distribution. The conditional distribution is usually simple enough to
where we can use more traditional sampling techniques.

Gibbs Sampling

1. Select some initial values𝑈 (0)
𝑘

for each value of 𝑘.
2. Until convergence:

(a) For each 1 ≤ 𝑗 ≤ 𝑘, generate𝑈 (𝑡)
𝑘

by sampling from

𝑃(𝑈 (𝑡)
𝑗
|𝑈 (𝑡)1 , ..., 𝑈

(𝑡)
𝑗−1 , 𝑈

(𝑡−1)
𝑗+1 , ..., 𝑈

(𝑡−1)
𝑘
)

So long as the Markov chain is ergodic, its stationary distribution is exactly the joint
distribution – not a surprise, since the marginal densities are never touched in this
process. In cases where we have some variables that are very highly correlated, our
Markov chain might get stuck in one region of state space and fail to explore the whole
space in any reasonable number of iterations. In cases like this, other algorithms like
the Metropolis-Hastings algorithm or Hamiltonian Monte Carlo might be preferred.

We can think of Gibbs Sampling as similar to the EM algorithm, where we consider the
latent data Z𝑚 as an additional parameter for the Gibbs sampler.

※ Additive Models

Previously we mentioned that we can use predefined basis functions to model non-
linear relationships in our data. We can add more flexibility to this idea by exploring
generalized additive models:

E[𝑌 |𝑋1 , 𝑋2 , ..., 𝑋𝑝 = 𝛼 +
𝑝∑
𝑖=1

𝑓𝑖(𝑋𝑖),

where the 𝑓 in question are nonparametric smooth functions.

21

Machine Learning 7.1 Hierarchical Mixture of Experts (HME)

Tree-based models are those that partition the data space into hypercubes recursively
(usually with binary splits) and then independently fit a predictor to the data within
each hypercube. To run inference on a tree-based model, we just need to know what
region in the data space the inference-time point lies in, and use the model fit to that
region. These models are popular in the medical sciences, since they mimic how a
doctor might think about a problem, as a series of decisions with a different model for
each decision. The locations of the boundaries of the hypercubes (splitting variables) are
determined greedily, as finding the optimum partition is computationally infeasible.
The size of the tree is a hyperparmeter that determines the model’s complexity – a tree
too big will overfit, and a tree too small may underfit. Typically, we use a pruning
process to decide how big a tree should be. We grow out a rather large tree, and then
collapse nodes of the tree (hypercubes) to form a subtree that optimizes a cost function
(known as cost-complexity pruning) by collapsing (combining) internal (non-terminal)
nodes. The cost function in question is known as a node impurity measure, i.e. it
measures how polluted the children of the split node are. The more non-homogenous
the child, the higher the measure. In classification tasks, common impurity measures
are the Gini index and cross-entropy, two differentiable functions which peak when
the child node has mixed-up classes and continuously decay as the classes get more and
more homogenous.

Tree-based regression and classification models are often intuituive, easy to visualize,
and simple to implement. Each individual model in the tree might be very simple (the
classification and regression tree algorithm, or CART, fits constant functions to each
terminal node in the tree) which is easier than trying to fit a complex non-linear model all-
at-once, and the overall model will still be a good estimate of the non-linearity. However,
they do suffer from instability (small changes in the data may result in drastically
different splits), a non-smooth decision surface, and can be overall expensive to train as
the number of individual models might be very high.

7.1 Hierarchical Mixture of Experts (HME)

While tree-based methods like CART have hard-line split boundaries, the HME pro-
cedure has soft probabilistic boundaries. This property, along with the choice to fit
logistic/linear regression models to each node versus constant functions, will result in
a smooth optimization problem, and is formally a type of mixture model. It can be
thought of as a tree with soft splits. In literature, the terminal nodes (the regions where
we fit a regression/classification function) are called experts, and the non-terminal
nodes are gating functions (determine probabilities to assign to the subtrees), hence the
name "hierarchical mixture of experts." Each expert fits some function 𝑌 ∼ 𝑃(𝑦 |𝑥, 𝜗 𝑗ℓ),

22

Machine Learning Boosting

and each gating function outputs a probability

𝑔𝑗(𝑥, 𝛾𝑗) =
𝑒
𝛾⊤
𝑗
𝑥∑

𝑒𝛾
⊤
𝑘
𝑥

for all 𝑗 children in the split. The most convenient way to learn the mixture probabilities
(i.e. the gating functions) is to use the EM algorithm, as discussed earlier. While HME
can offer better, more representative performance compared to CART, its probabilistic
nature makes it impossible to find an optimum splitting topology, and its nature as a
mixture model makes fitting it much more expensive as well. HME also lacks a lot of
the interpretability that CART offers.

※ Boosting

Boosting is the concept that an ensemble of weak classifiers will result in a more powerful
"committee." While this may sound similar to other committee-based techniques like
bagging, where we average multiple bootstrapped models, boosting is a fundamentally
different technique.

Consider a two-class problem whose outputs are encoded as -1 or 1. The in-sample
error is then 1

𝑁

∑
1(𝑦𝑖 ≠ 𝐺(x𝑖)), and the expected generalization error is E𝑋𝑌 𝐼(𝑌 ≠

𝐺(𝑋)). The general idea is to begin with a very weak classifier, whose outputs are only
slightly better than random. We train 𝑚 weak classifiers, and between each iteration,
we weight misclassified training samples more heavily for the next classifier, so the
next weak classifier in the sequence must concentrate on training examples missed by
earlier classifiers. Our final output is then a weighted majority vote of all the candidates,
where the weights depend on the error rates of each classifier (log(1− 𝑒𝑟𝑟𝑚/𝑒𝑟𝑟𝑚)). This
algorithm is known as AdaBoost.M1. The weak learners in question are often decision
tree stumps – a classification tree with two nodes. A decision stump is a classifier which
picks one feature, and determines a threshold for that feature which best splits the data.

All in all, we are trying to minimze a general loss function for general basis functions:

min
𝛼,𝛽

𝐿
(
𝑦,
∑

𝛼𝑛 𝑓𝑛(x, 𝛽𝑛)
)

for some mixing coefficients 𝛼 and basis functions 𝑓 parameterized by 𝛽. The sum inside
of the loss function is difficult to deal with, so we may opt to deal with it iteratively. In
the AdaBoost case, the individual decision stumps 𝐺𝑚 are the basis functions, weighted
by the expansion coefficients 𝛼. Boosting corresponds to a technique known as foreward
stagewise additive modeling, where we estimate each 𝑓𝑚 fully sequentially, without
changing previous estimates.

𝑓𝑚(x) = 𝑓𝑚−1 + 𝛼𝑚𝑏(x, 𝛽𝑚), (𝛼𝑚 , 𝛽𝑚) = arg min
𝛼,𝛽

∑
𝐿(𝑦𝑖 , 𝑓𝑚−1(x𝑖) + 𝛼𝑏(x𝑖 ; 𝛽))

23

Machine Learning 8.1 Boosting Trees

where 𝛼 are the expansion coefficients, 𝑏 is a basis function and 𝛽 are the parameters.

AdaBoost is equivalent to forward stagewise additive modeling where the loss function
in question is 𝐿(𝑦, 𝑓 (x)) = exp(−𝑦 𝑓 (x)). AdaBoost was not designed with this relation-
ship in mind, but the nature of the exponential loss function gives it a nice analogy to
the log-odds of 𝑃(𝑌 = 1|𝑥).

8.1 Boosting Trees

We previously mentioned tree-based methods, where we partition the data space into
hypercubes and fit constant functions to each hypercube. The actual partitioning scheme
is intractable and optimized greedily. The boosted tree model is the sum of classification
trees, induced in the forward-stagewise manner mentioned above. If we let Θ denote
the set of parameters 𝑅 𝑗 , 𝛾𝑗 , where 𝑅 denotes the region and 𝛾 is the mean of points in
that region, the boosted tree model becomes:

𝑓𝑀(x) =
∑

𝑇(x;Θ𝑚), Θ̂𝑚 = arg min
𝑚

∑
𝐿(𝑦𝑖 , 𝑓𝑚−1(x𝑖) + 𝑇(x𝑖 ;Θ𝑚)).

Finding the regions 𝑅 𝑗 is even more difficult in this case than in the normal tree case.
For simple cases – such as binary classification with exponential loss – the problem
becomes noticeably easier (no more difficult than the CART case), and we can use the
AdaBoost method for boosting classification trees. Other loss functions may give more
robust classifiers but are not simple to solve.

8.2 Gradient Boosting

AdaBoost happens to correspond to the forward stagewise additive model with expo-
nential loss. Other loss functions can be used as well – however, they are less trivial
to compute, and as such we must result to gradient methods to optimize each itera-
tion. The method of optimizing a forward stagewise additive model with an arbitrary
loss function through gradient descent is known as gradient boosting. The gradient
boosting algorithm begins with some constant model 𝑓0, fits a weak learner ℎ𝑛 to the
negative gradient of 𝑓𝑛−1, and then takes a step 𝛾 so that 𝑓𝑛 = 𝑓𝑛−1 + 𝛾ℎ𝑛 minimizes
the loss 𝐿(𝑦, 𝑓𝑛(x)). While AdaBoost identifies the failure points of weak learners by
up-weighting them in subsequent iterations, gradient boosting uses the gradients of the
loss function at each iteration to discover these failure points. Gradient boosting is an
inherently more flexible framework compared to AdaBoost, but suffers from an inherent
lack of explainability.

※ Neural Networks

Neural networks represent a class of learning methods that automatically derive features
as linear combinations of the inputs, and then model the target as a nonlinear function
of those inputs.

24

Machine Learning Neural Networks

The simplest neural network is the single layer perceptron, also known as a feed-forward
neural network. This is not to be confused with Rosenblatt’s perceptron algorithm
earlier. In a single-layer FNN, we accept an 𝑛×𝑝-dimensional input X and aim to retrieve
1 output for regression and 𝐾 outputs for classification. We then learn 𝑚 hidden states
Z𝑚 as linear combinations of the features of X. We additionally apply some non-linear
transform to the result, which gives us additional flexibility in the form of nonlinearity.
Our final output is then a linear combination of the hidden units, combined with another
output function that morphs the result into something interpretable.

Z𝑚 = 𝜎(𝛼⊤X), T𝑘 = 𝛽⊤𝑚Z, 𝑓𝑘(X) = 𝑔𝑘(T).

Here, the sigmoid function 𝜎(·) is typically used (for similar reasons to the logistic
regression case). If we use the Gaussian radial basis function as the activation we call
this a radial basis function network. Although it is hard to see from the functional
form, we typically add a constant 1 as an input feature to allow learning a bias term at
each node.

The output function is typically the softmax function

𝑔𝑘(T) =
𝑒T𝑘∑
ℓ 𝑒

Tℓ
.

Simply put, the softmax transforms the outputs into a probability distribution over all
the output classes. You can think of the Z𝑚 as a basis expansion of the original inputs,
at which point the neural network is simply a standard linear model. The important
difference here is that the parameters of the basis functions are learned directly from
the data.

In regression, we typically use a squared error as our loss function, and in classification
we typically use cross-entropy. The classification output is 𝐺(x) = arg max𝑘 𝑓𝑘(x). The
generic approach to minimizing the loss is via gradient descent, called back-propagation
in the neural network setting. Since the overall functional form of the model can be
thought of as a composition of additions, multiplications, and differentiable activations,
we typically track the local gradients at each node by using the chain rule. In the
forward pass, the current weights are used to evaluate 𝑓𝑘(x𝑖) over the training set; in
the backward pass, the errors are computed and back-propagated through the network,
and the weights are updated by taking a step (whose size is determined by the learning
rate hyperparameter). The simple, local nature of backpropagation means that each
hidden node’s updates only depend on the the nodes it is directly linked to, meaning
the computation becomes embarassingly parallel.

The dataset is typically never passed through the network all at once. Instead, the
network will process batches of data. A single batch being passed through the network
forward and backward is called an iteration or step. One full pass over the entire
training set (consisting of 𝑁/𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 iterations) is called an epoch.

25

Machine Learning Support Vector Machines

Neural networks come with their own share of problems. Like with all other models,
they have their own complexity parameter, captured in the number of layers and the
number of nodes in each layer. They are prone to overfitting and are sensitive to their
initialization constraints (for example, a network with all weights initialized to zero will
never learn). Due to the long-tail asymptotes of the sigmoid function, gradients in the
tail regions will be very close to zero, causing the network to stop learning (known as
the vanishing gradients problem). The rectified linear unit (ReLU) activation function
𝑓 (𝑥) = 1𝑥 > 0𝑥 solves this problem by having a derivative of 0 at negative values
(inducing sparsity in the network) and 1 otherwise. Even though it might seem odd
that having hard saturation for negative values (blocking backpropagation) would help
the network, it does so in practice. In the cases where a neuron is only activated by
negative values, we might want to use "Leaky" ReLU, letting a small gradient propagate
through negative values. The opposite problem is when the gradients are large (>1) in
large networks, causing the gradients to explode.

※ Support Vector Machines

We’ve previously seen how separating hyperplanes can classify linearly separable classes.
Support vector machines cover the case where the classes do overlap by finding linear
decision boundaries in a transformed feature space (where the transformation may
be nonlinear). For a dataset (X, y) where 𝑦𝑖 ∈ {−1, 1}, we can define a classifier
𝐺(x) = sign(x⊤𝛽). The set of points such that x⊤𝛽 = 0 is the separating hyperplane.
We typically try to find a max margin classifier – i.e. a hyperplane that maximizes the
distance between the two classes. In other words, we maximize𝑀 such that 𝑦𝑖(x⊤𝛽) ≥ 𝑀
for ∥𝛽∥ = 1 (an equivalent reformulation is to minimize ∥𝛽∥ such that 𝑦𝑖(x⊤𝛽) ≥ 1 – then
𝑀 = 1/∥𝛽∥). The band separating the two classes is the margin. This case, where the
classes are fully separable, is also known as a hard margin SVM.

If the data is not linearly separable, we might allow the classifier to make some number
of mistakes. To do this, we can define a slack variable 𝜉 for each data point. 𝜉𝑖
is proportional to how far x⊤

𝑖
𝛽 is on the wrong side of the margin. We relax the

optimization to then be 𝑦𝑖(x⊤𝑖 𝛽) ≥ 1 − 𝜉𝑖 . A misclassification is then when 𝜉𝑖 > 1 (this
means it is on the wrong side of the classification hyperplane). We can bound

∑
𝜉𝑖 < 𝐾

to limit us to up to 𝐾 misclassifications. This is a soft-margin SVM, and is typically
computed as a quadratic programming problem.

Soft-Margin SVM

min ∥𝛽∥ subject to

𝑦𝑖(x⊤𝑖 𝛽) ≥ 1 − 𝜉𝑖 ,

𝜉𝑖 ≥ 0,
∑

𝜉𝑖 < 𝐾
.

26

Machine Learning Unsupervised Learning

The SVM classifier can be characterized entirely by the "boundary" points that lie exactly
on the margin. In fact, the decision boundary is not at all impacted by points that lie
well inside their own class boundary, meaning it is very easy to store and retrieve the
SVM classifier. These particular points that define the margin are known as the support
vectors (hence the name).

To solve the quadratic programming problem, we can use Lagrange multipliers. We can
reformulate our previous soft-margin SVM formulation into a single Lagrange primal

𝐿𝑃 =
1
2 ∥𝛽∥

2 + 𝐶
∑

𝜉𝑖 −
∑

𝛼𝑖[𝑦𝑖(x⊤𝛽) − (1 − 𝜉𝑖)] −
∑

𝜇𝑖𝜉𝑖 .

Here, we use 𝐶 instead of the constant 𝐾 – the larger the value of 𝐶, the more we
penalize misclassification. We take all our constraints and reformulate them in terms of
the lagrange multipliers 𝛼𝑖 and 𝜇𝑖 . The Lagrange dual is then

𝐿𝐷 =
∑

𝛼𝑖 −
1
2

∑
𝛼𝑖𝛼𝑖′𝑦𝑖𝑦𝑖′x⊤𝑖 x𝑖′

Maximizing the dual is easier than minimizing the primal, and doing so gives us the
appropriate �̂� that we are searching for (details omitted).

The idea behind SVMs is that we can lift the data into a higher, possibly infinite-
dimensional space using basis functions and then find a linear classifier in that trans-
formed space. The key thing to note is the x⊤

𝑖
x𝑖 in the dual formulation. For basis

functions ℎ, this instead is the inner product ⟨ℎ(x), ℎ(x′)⟩. This means that we don’t
really care about ℎ itself, but only the inner product, the kernel 𝐾(x, x′) = ⟨ℎ(x), ℎ(x′)⟩.
This idea, where we can use an easy-to-evaluate kernel instead of ever having to process
the possibly infinite set of basis functions, is often referred to as the kernel trick.

※ Unsupervised Learning

So far we have assumed that we can train a model given the joint values of a training set
consisting of (x, 𝑦) pairs. In this way, if we consider the training set to be drawn from
a joint density 𝑃(X,Y), then supervised learning amounts to estimate the conditional
density 𝑃(Y|X). In an unsupervised setting, we instead try to learn 𝑃(X) directly. While
supervised learning algorithms typically focus on finding the optimum parameters 𝜃

to minimize a loss 𝐿(Y, 𝜃), and likewise use that loss to score model performance,
unsupervised algorithms have no such equivalent. Unsupervised algorithms might
need to learn properties of X that are significantly more complicated, and must do so
without any rigorous evaluation.r

11.1 Association Mining

Association mining attempts to find relationships between seemingly independent vari-
ables, for example "If a customer buys eggs, there is an 80% chance they also buy bread." This

27

Machine Learning 11.2 Cluster Analysis

particular example is known in finance as market basket analysis. An association rule
consists of the antecedent ("If a customer buys eggs") followed by a consequent ("the
customer buys bread"). The frequency that this pair appears in the dataset is called its
support. The Apriori algorithm is a common association mining tool that is especially
useful in optimizing complex, probabilistic database queries. The details are omitted
here.

11.2 Cluster Analysis

Cluster analysis is the process of grouping objects into collections (clusters) such that
objects inside the cluster are more closely related to each other than objects in another
cluster. Clustering methods depend on a notion of similarity, which depends on the
properties of the objects being clustered (much like a loss function in supervised set-
tings).

Each data point in the dataset has 𝑝 attributes (features). The dissimilarity between
two datapoints is a weighted sum of some distance function 𝑑(·, ·) over the attributes
(so 𝐷(x𝑖 , x𝑖′) =

∑
𝑑 𝑗(x𝑖 𝑗 , x𝑖′ 𝑗)). Sometimes, as in the case for Euclidean distance, the 𝑑 𝑗

are the same for all features, but this is not always true. The Euclidean dissimilarity
measure is the most popular, i.e. 𝑑(𝑥, 𝑦) = (𝑥 − 𝑦)2.

Combinatorial clustering algorithms encode observations into one of 𝐾 predefined clus-
ters by minmizing a "loss" function dependent on the pairwise dissimilarities between
every pair of observations. Typically this is done through some kind of combinatorial
optimization, such as by greedy descent – in many clustering scenarios, the feature
space is too large to feasibly compute a global minimum, but a local minimum may be
achieved.

11.2.1 𝐾-means

𝐾-means: Lloyd’s Algorithm

1. For a given cluster assignment 𝐶, centroids (means) m𝑘 are calculated to
minimize the intra-cluster distances ∥x𝑖 −m𝑘 ∥.

min
𝐶,{m𝑘}

𝑘∑
𝑘=1

𝑁𝑘

∑
𝐶(𝑖)=𝑘

∥x𝑖 −m𝑘 ∥2

2. Given the current set of means, each observation is assigned to its closest
cluster mean.

𝐶(𝑖) = arg min
1≤𝑘≤𝐾

∥x𝑖 −m𝑘 ∥2

3. (1) and (2) are repeated until the assignments no longer change.

28

Machine Learning 11.3 Hierarchical Clustering

Note that the above algorithm is very similar to the EM algorithm for Gaussian mixtures.
In fact this is exactly the case, where in EM we assign "responsibilities" to each datapoint
in the E-step, based on the mixture we believe it belongs to; and then in the M-step we
compute the parameters of each mixture component based on the assignments in the
E-step. In this way the EM algorithm can be thought of a "softer" version of 𝐾-means
(since in 𝐾-means there is no probabilistic assignment – the clusters are deterministic).

𝐾-means is often used in the data processing world for compression in the form of vector
quantization. Suppose an 8-bit image; we can use 𝐾-means to reduce the number of
colors in the image. Here the distance function is the distance between greyscale color
values. If we can decrease the 8-bit image into 4 colors, we only need 2 bits per pixel, a
huge improvement in efficiency. This form of compression is inherently lossy, meaning
we cannot recover the original 8-bit values from the compressed version.

𝐾-means refers to the particular problem setting where we are able to compute the pair-
wise Euclidean distance between any two pairs of points. In places where an obvious
metric is not easily defined, we may instead to choose one of the datapoints (an exem-
plar) as the centroid – this is known as the 𝐾-medoids problem. This new restriction
that the centroids must be datapoints themselves makes this problem drastically more
computationally expensive. In practice, we may pre-compute all the pairwise dissimi-
larities in this case, saving it as a dissimilarity or proximity matrix, since there are no
new distances that would need to be computed. 𝐾-means style algorithms still require
intuition to select the number 𝐾, and selecting such a number dynamically is difficult.

11.3 Hierarchical Clustering

While 𝐾-means requires knowledge of the number of clusters 𝐾, other methods might
either start from 1 cluster and recursively split that cluster until some performance
threshold is guaranteed. Alternatively, they might start with many clusters (as many as
𝑁) and iteratively combine clusters until that threshold is achieved. The former method
is known as divisive clustering and the latter is known as agglomerative clustering,
both examples of hierarchical clustering.

Agglomerative clustering algorithms begin with each element representing a singleton
cluster. At each step, the clusters that are closest together are merged together, decreas-
ing the total number of clusters by one, until the desired number of clusters is reached.
The dissimilarity between two groups is the minimum pairwise distance between two
points in different clusters (this is known as single-linkage agglomerative clustering).
Alternatively, complete linkage agglomerative clustering takes the maximum pairwise
distance between two points in different clusters. Because single-linkage clustering only
takes into account the closest two points, it can result in clusters with very large com-
binatorial diameters. Complete linkage faces the opposite problem, where sometimes

29

Machine Learning 11.4 Principal Components

points will be closer to other clusters than to members of their own cluster. Group
average clustering attempts to alleviate these problems by taking the average pairwise
dissilmiarity between two groups to determine the intercluster dissimliarity.

A similar approach can be taken for divisive clustering, although divisive clustering is
much less well-studied and is less popular than agglomerative clustering.

11.4 Principal Components

As seen earlier, principal components reveal the mechanism behind ridge regression.
Principal components are projections of the data that provide a sequence of best ap-
proximations to that data. Consider a zero-mean, rank 𝑝 dataset. The rank 𝑞 ≤ 𝑝

linear approximation can be given by the linear equation 𝑓 (𝜆) = V𝑞𝜆, where V𝑞 is
a rank-𝑞 orthonormal matrix. Then minimizing the reconstruction error amounts to
minimizing

∑ ∥x𝑖 − V𝑞𝜆𝑖 ∥22, which can be done with 𝜆𝑖 = V⊤𝑞 x𝑖 , yielding the objective
minV𝑞

∑ ∥x𝑖 − V𝑞V⊤𝑞 x𝑖 ∥22. The matrix V𝑞V⊤𝑞 acts as a projection matrix, and V𝑞V⊤𝑞 x𝑖
is the orthogonal projection of x𝑖 onto the subspace spanned by the columns of V𝑞 .
The solution to this problem comes in the form of the singular value decomposition
X = UΣV⊤, where V𝑞 is the first 𝑞 columns of V. The columns of UΣ are the 𝜆𝑖 ,
the principal components of X. It can be thought of that for a given point x𝑖 , v𝑗 is
the direction of axis 𝑗, and u𝑖 𝑗𝜎𝑗 is the distance of the projected x𝑖 from the origin. The
largest principal components represent the linear projection of maximum variance. This
variance-maximization makes principal component analysis (PCA) a powerful tool for
separating, identifying, and visualizing clusters.

11.5 Spectral Clustering

Clustering methods like𝐾-means struggle when the clusters in question are non-convex.
To solve this problem, we model the data as a graph based on the pairwise similarity
matrix S. The vertices of the graph are the data points, and edges are drawn between
points where the similarity is above some threshold. The weight of each edge is the
similarity between those two points. Then clustering becomes a graph-partition prob-
lem, where intra-cluster nodes have high-weight edges and inter-cluster nodes have
low-weight edges. The matrix of edge weights W, known as the adjacency matrix,
models the actual edges in the graph. If we subtract the degree of each node from the
diagonal of W (the degree is the sum of all weights connected to that point), we end up
with the unnormalized graph Laplacian matrix L. Spectral clustering then finds the
𝑚 eigenvectors Z corresponding to the 𝑚 smallest eigenvectors of L. We can then use
𝐾-means on the values in the rows of Z to yield a clustering of the data (so if, for the
2nd eigenvector, the first 10 values are < 0 and the next 10 values are > 0, we might then
end up with two clusters, where the points in the clusters correspond to the indices in
the eigenvector). In particular, the Laplacian matrix always has a zero eigenvalue with

30

Machine Learning 11.6 Non-negative Matrix Factorization

constant eigenvector, so we are actually most interested in the 2nd smallest eigenvalue
onwards.

11.6 Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) is an alternative to PCA, where the data is
assumed non-negative (such as in image data). The data matrix X is decomposed into
WH. These matrices are determined by maximizing the log likelihood of a model where
the data is assumed to be Poisson with mean X:

𝐿(W,H) =
𝑁∑
𝑖=1

𝑝∑
𝑗=1

x𝑖 𝑗 log(WH)𝑖 𝑗 − (WH)𝑖 𝑗 .

This form admits no closed-form solution, and as such must be approximated numer-
ically. The low-dimensional basis yielded by NMF are more interpretable than that of
PCA, but NMF suffers from non-uniqueness, as multiple choices of basis vectors may
yield feasible solutions.

※ Random Forests

Bagging methods reduce variance of a predictor by ensembling multiple learners to-
gether. For regression, we can average an ensemble of weak regressors, and for classifi-
cation we can vote by committee, where each learner is trained on a bootstrap sample.
Boosting methods also propose a committee approach, except the committee of weak
learners evolves over time, an each learns a specific weight. Boosting almost universally
outperforms bagging.

Random forests are a modification of bagging that averages a collection of decorrelated
trees. Random forests perform similarly to boosting, and are widely used due to ease of
implementation.

Trees are generally ideal candidates for bagging, since they have low bias when suffi-
ciently deep. Since the trees are typically i.i.d., the mean of the average is equivalent
to the mean of any one tree, so the bias of the model stays stable. But the variance will
be reduced by a factor of the number of trees. However, this is not true if the trees
are not independent. The more correlated the trees are, the less beneficial averaging
becomes. Random forests address this issue by attempting to reduce the correlation of
trees as much as possible without contributing to variance. This is done by, for each
tree, selecting a subset of predictor variables as candidates for splitting at each node.
Typically the number of variables chosen is around √𝑝 where 𝑝 is the total number of
variables.

Random forests perform poorly when only a small percentage of variables are relevant,
since at each split there is a low chance an important variable will be selected. Addi-

31

Machine Learning Graphical Models

tionally, while intuitively random forests should not be able to overfit the data (since
they keep the variance so far down), in practice an average of many fully-grown trees
can result in too complex of a model and cause even minute differences in variance to
explode.

※ Graphical Models

A graph is a set of vertices and edges joining pairs of vertices. A graphical model is a
way to represent the joint distribution of a set of random variables, where the nodes are
each random variable and the edges represent some conditional dependence. Graphical
models where the edges have no direction are called Markov random fields (MRFs).
The edges of a graph are parameterized by potentials, which describe the strength of the
conditional dependence between the two corresponding vertices. Much of traditional
algorithmic graph theory applies here, and the details are left to a more thorough
treatment of classical algorithms.

If two vertices are not connected with an edge, that means they are conditionally inde-
pendent given the rest of the graph. A graph can be partitioned into subgraphs. If a
subgraph separates two other subgraphs, meaning every path from subgraph 𝐴 to 𝐵
passes through subgraph 𝐶, then all of 𝐴 is conditionally independent of 𝐵 given 𝐶.
These are known as the pairwise and global Markov properties of the graph, respectively.

The global Markov property allows for a decomposition of the graph into cliques, which
are complete (fully-connected) sugraphs. A maximal clique is one where no additional
vertices may be added while maintaining this property. Then each clique is assigned a
specific potential function that captures the dependence present within in that clique.
The density function over 𝒢 is the product of all clique potentials, so for cliques 𝒞, and
potential 𝜑,

𝑓 (𝑥) = 1
𝑍

∏
𝐶∈𝒞

𝜑𝐶(𝑥𝐶).

The property that a graph has "independent" cliques is known as the Hammersley-
Clifford theorem. Graph estimation methods often decompose these graphs into max-
imal cliques.

Probabilistic graphical models comprise their own complete field of study, and as such
the details here are left to a more thorough exploration, such as in Koller and Friedman’s
Probabilistic Graphical Models.

32

	Supervised Learning
	Least Squares and Nearest Neighbors

	Linear Models
	Linear Regression
	Shrinkage
	Ridge Regression
	Lasso
	A Brief Comparison

	Linear Classification
	Linear Discriminant Analysis
	Logistic Regression
	A Brief Comparison
	Separating Hyperplanes

	Basis Expansions and Regularization
	Kernel Methods
	Kernel Density Estimation
	Naive Bayes Classifier
	Radial Basis Functions

	Model Selection
	Bias and Variance
	Bayesian Information Criterion
	Vapnik-Chervonekis Dimension

	Cross-Validation
	Bootstrap

	Model Inference and EM
	Expectation-Maximization
	Gibbs Sampling

	Additive Models
	Hierarchical Mixture of Experts (HME)

	Boosting
	Boosting Trees
	Gradient Boosting

	Neural Networks
	Support Vector Machines
	Unsupervised Learning
	Association Mining
	Cluster Analysis
	K-means

	Hierarchical Clustering
	Principal Components
	Spectral Clustering
	Non-negative Matrix Factorization

	Random Forests
	Graphical Models

