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Introduction

Intervals in the real line carry a very simple notion of size: their length.
The Lebesgue theory of measure is a vast generalization of this notion. It
assigns to a huge collection of subsets of the real line a notion of size which
builds in a consistent fashion from the special case of intervals. It sets the
framework for the theory of Lebesgue integration, which offers a much more
powerful notion of the integral than Riemann’s, the theory taught in intro-
ductory real analysis. This class will present these two theories rigorously,
building them in the context of motivating problems in probability theory
and analysis. We will also develop the theory of metric and topological
spaces, including the study of function spaces, such as the set of continuous
functions f : C — R on a given compact set, or the L, spaces, for which
the Lebesgue theory will be needed. We will prove topological results such
as the theorems of Tychonoff, Urysohn, Tietze,and function-space results
including the Arzela-Ascoli and Stone-Weierstrass theorems.

Formally the only prerequisite is Math 104. However, this is a graduate-level
course, (although many students entering high-level math PhD programs en-
counter the material as undergraduates). Those whose primary preparation
is Math 104, or an equivalent introductory course to real analysis, should
expect significantly greater sophistication in the treatment offered here and
more challenging problem sets than in the earlier class. Not all details will
be treated in lectures, when comprehensiveness may sometimes be sacrificed
for the sake of clarity. Students maybe expected to study texts including
reading and analysing assigned portions.
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1 Intro — A Brief Review

We have a fundamental notion of approximation and distance in which we
have Q embedded as a dense set in R. The rationals, of course, are those
numbers of the form m/n where m,n € Z. The distance measure between
two rationals is d(r, q) is itself a positive rational by basic algebra (i.e. d :
Q xQ +— Q) and allows us to define a metric space along with the triangle
inequality. Every rational also has a “recurring binary structure” (1/2 =
0.500000..., 1/9 = 0.11111....), but most real numbers do not. Imagine a
situation where we assign a binary number to every number between 0 and
1. We then know that there’s a probability of 1/2 that our number is strictly
less than 1/2 and a probability of 1/2 that our number is strictly greater
than 1/2, but the probability that the number is itself 1/2 is 0. Intuitively
this seems paradoxical; there is a 0% chance that we will manage to hit a
“perfect” rational number, so we intuitively guess that while the rationals
are dense they are also sparse in the reals.

1.1 Construction of the Reals

Suppose a sequence (z,, € Q : n € N). The sequence is Cauchy if |z, —z,,| —
0 as n,m — oo. More formally, we can define an epsilon-delta statement as
Ve > 03N € N:Vm,n > N, |z, — x| < €. Perhaps, then R ~ a Cauchy
sequence of rationals. Perhaps here we’ve overengineered what we're doing.
If we identify two Cauchy sequences of rationals, z,, and ¥,, we don’t want
to accidentally count a real number twice. We define a notion of equality
—if x, — yp — 0, we denote those sequences as equivalent. Recall that
equivalence relations must follow reflexivity, symmetry, and transitivity, and
that relations divide a space into equivalence classes. The real numbers are
precisely the set of equivalence classes of the set of Cauchy sequences of the
rationals.

1.2 Riemann Integration

The Riemann integral divides the domain of a function into intervals and
takes an infimum and supremum approximation of rectangular area of the
function. Then f : [0,1] — R is Riemann integrable if 3 € R such that
Ve > 0, and we define mesh(s) is the maximum interval size, then 3§ > 0
such that V partitions s of mesh(s) < ¢, then |I5(f) — I| <e.



2 Borel’s Normal Number Theorem

It is difficult to develop a probabilistic interpretation of measure if we limit
ourselves to discrete spaces. A complete interpretation of probability based
in measure theory requires us to consider two types of problems — an in-
finitely repeated operation (infinite coin flips) and infinitely fine operations
(selecting a single point from a segment).

2.1 The Unit Interval

We want to express both of the aforementioned problems in a single model.
To this end, we recall the notions of probabilistic independence and
probabilistic expected value. We form analogies here from general math-
ematical notions such as the interval and the Riemann integral.

Let © denote (0,1], with w € Q. The length of the interval I = (a,b]
is denoted |I|, with
1] = l(@, 8] =b—a. 1)

For a finite collection of disjoint intervals I; contained in 2, the union of the
intervals A has probability

P(A) =311 (2.2)
=1

If A and B are two such finite disjoint unions of intervals, and A and B are
themselves disjoint, then

P(AU B) = P(A) + P(B) (2.3)

All this should be familiar from basic probability theory. What is less ob-
vious is that this relation is a consequence of the linearity of the Riemann

integral:
1

1 1
/0 (f(w) + 9(w))dw = /0 F(w)deo + /0 9(w)dw (2.4)

In this way, we can model the instant an “event” happens during a unit
interval of time as random in that it lies in A with probability P(A). Here
we have our “point-in-a-segment” problem modeled. We can also use P(A)
to model our coin flips.



Associate with each w the nonterminting dyadic expression

()
w=Y_ ”2n = .dy (w)da(w)... (2.5)
n=1

with each d,,(w) drawn from {0, 1}. Thus the sequence of d;(w)’s is precisely
the sequence of binary digits in the expansion of w. Numbers with multiple
binary expansions take the nonterminating expansion for definiteness. We
can split the unit interval into different intervals corresponding to the binary
expansion; dj(w) = 0 implies that w is in (0, 3], while di(w) = 1 puts w in
(%, 1], and so on. Dividing the unit interval into these intervals, dyadic
intervals, of width 2% essentially allows us to model the “coin-flipping”
problem within the unit interval.

2.2 The Weak Law of Large Numbers
The Weak Law of Large Numbers

For all € > 0,

> s] = (2.6)

In essence, as n tends to infinity, the probability that the “relative frequency”
of heads will deviate from 1/2 tends to 0.

2.2.1 Proof of the WLLN

Applying the Riemann integral in the role of the expected value (as men-
tioned before), we can prove (1.6) using Chebyshev’s inequality. This be-
comes simpler through the use of the Rademacher functions:

Rademacher Functions

(65 — 2 ) :{“ if dn(w) = 2.7)

1
1 ifdp(w) =1

We can then consider the partial sums

sn(w) = ri(w). (2.8)



Substituting d;(w) we see Y1 | di(w) = (sp(w)+n)/2; we can then sustitute
¢ with /2 and rephrase (1.6) as

n—o0

lim P [w : ';sn(w)‘ > g] ~0. (2.8)

The Rademacher functions can be interpreted probabilistically — if you have
a background in basic probability, you’ll note the connection to the random
walk on the real line, and that r;(w) is the distance moved at step i, and s;(w)
is the position at step i. Note that every dyadic interval must contain two
child dyadic intervals (don’t think about this too hard), and therefore r;(w)
has value +1 in one child and —1 in the other. By this logic, fol ri(w)dw =0
and

/1 Sp(w)dw =0, (2.9)
0

here stating that the mean position after n steps is 0. Suppose i < j. Then
for a dyadic interval of rank j — 1, r;(w) is constant and r;(w) is —1 on the
left and +1 on the right. Then

1
/0 ri(w)rj(w)dw = 0, (2.10)

corresponding to the fact that independent random variables are uncorre-

lated. Since for each r;(w), r?(w) = 1, we can additionally see that

(2

/1 52 (w)dw = n, (2.11)
0

corresponding to the linearity of the variances of independent random vari-
ables.

Now we’'ve made an extensive relationship between the Riemann integral
of the Rademacher functions and probability theory. We can formally apply
Chebyshev’s inequality to (1.6) and get

1
Plw : [sp(w)| > ne] < n21€2 /0 s2 (w)dw = —. (2.12)

To understand why we can do this, let’s take a step back and investigate the
forces at work. Let f be a step function f(w) = ¢; for w € (xj_1, ;] where
0==2¢<...<z=1. Clearly [w: f(w) > ] is for @ > 0 a finite union of
intervals. Then,

1
aPlw: f(w) > a] < /0 f(w)dw. (2.13)

8
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a =n?%e? and f(w) = s2(w) gives the desired result.

2.3 The Strong Law of Large Numbers

Normal Numbers

N=|w: lim — Z d;( (2.14)

" n—ooo n

(1.14) describes the normal numbers, i.e. the real numbers whose binary
representation has a roughly “uniform” distribution of Os and 1s. We at-
tempt to show that it is practically certain that a number drawn at random
from the unit interval is a normal number. Let A C Q be negligible if
for all € > 0 there is a countable (but not necessarily disjoint) collection of
intervals Z; such that

Aclz, Y Inl<e (2.15)
j k

A negligible set is one which can be covered by a set of intervals whose sum
total length is arbitrarily small. Intuitively, P(A) = 0. As an observation,
note that a countable union of negligible sets must be negligible (why?). A
set containing a single point is negligible; since any countable sets is the
union of countable “single point” sets, every countable set is negligible. The
rationals are negligible — note that every rational number must be a repeat-
ing decimal in binary. If we treat the digits of the binary representation as
a coin flip, there is 0 probability that a series of coin flips would repeat in a



pattern infinitely.

Borel’s Normal Number Theorem

The set of normal numbers has negligible complement.
The above theorem is a special case of the strong law of large numbers.

2.3.1 Proof of Borel’s Normal Number Theorem

It is not enough to simply say that N€ is countable and therefore negligible,
since N€ is uncountable (for instance take all numbers 0.11uj11lugllus...
where the frequency of 1 is at least 2/3 and so is not normal; however, the
cardinality of numbers of that form is the same as that of the uncountable
set of numbers 0.ujugus...). Note that (1.14) is equivalent to saying

N = [w: lim lsn(w) =0 (2.16)

n—oo n ]

For N¢ to be negligible it must satisfy (1.15). Using the same logic used in
the proof for the WLLN, we can write

1 1
Plw : |sp(w)] > ne] < / s (w)dw. (2.17)
0
We can take s (w) to mean Y 7o (w)rs(w)ry(w)rs(w).
Notice that some of these indices might be the same since they all range
over 1,...,n independently of each other. Using a different set of indices, we

can see that our possible values of the summand in the above expression
could be the following:

<

S Lo SR SN0 S

(

(

(W)rj(w)re(w) = rj(w)rr(w) (2.18)
(w)rs( (w)r;

30303

In the last 3 cases, note that they must necessarily integrate to 0. Consider,
without loss of generality, that ¢ is the greatest index in the 5th expression
above. Note that on the ¢ — 1st dyadic interval, rj(w), ri(w), ri(w) are

10



constant. Meanwhile, r;(w) is -1 on the left half of the interval and +1 on
the right half, so the total integral is 0; the same is true for the 3rd and 4th
expression. The first two expressions integrate to 1. In this case, how many
times does each expression occur? There are n occurrences of case 1. There
are 3n(n — 1) occurrences of type 2 (n choices for index i, 3 other indices
which can be paired with it, and n — 1 choices for the remaining index). In
that case:

1
/ st (w)dw =n +3n(n —1) < 3n2. (2.19)
0

Plugging this into (1.17) yields

P [w: ‘isn(w)' > g] <o (2.20)

Let {e,} be a positive sequence tending to 0 such that >, e~4n~2 converges.

Then if A, = [w : [n " sp(w)| > &), then >, P(A,) < oo by (1.20). For
some m, let w lies in A¢ for all n > m. Then |n~ts,(w)| < &, for all n > m,
then w is normal by (1.16) because &, tends to 0. For each m N2, A% C N,
so N¢ C Uy, Ap.

Given e we can choose m such that Y 2~ P(A,) <e. Ay is a finite disjoint
union of intervals Ugl,, with >, [Ink| = P(Ay), so UpZ,, Ay is a count-
able union of intervals; the intervals I,,;, provide the covering of N¢ that the
definition of negligibility calls for.

2.4 Strong Law vs Weak Law

Borel’s normal number theorem is stronger than the weak law of large num-
bers. For all n let f,,(w) be a step function on (0, 1]. Consider the following
relations:

nh_)rgo Plw : |[fo(w)| >¢€] =0 (2.21)
[w lim fo(w) =0 (2.22)

Notice that if we let f,(w) = Ls,(w), we get the weak law. (1.22) is then
the definition of a normal number (1.14). We delay the proof for now, but
there is a general result that shows that (1.22) implies (1.21) if (1.22) has
negligible complement; however, the converse is not true, which means that
the strong law implies the weak law but not the other way around.

11



2.5 Length

The complement of the set of normal numbers is negligible, so its comple-
ment cannot be; this would imply (0,1] = N U N€¢ is negligible, which is
clearly untrue. From this we get the (obvious) conclusion that an inter-
val with positive length is nonnegligible. We then arrive at the following
theorem which forms a basis for the Lebesgue theory of measure.

Interval Length Theorem

Let I = (a,b] be an interval of length |I| = b — a. Consider a fi-
nite sequence of intervals I = (ag, bx]. These intervals need not be
subintervals of (0, 1].

1. If Ugly C I and the I are disjoint, then ), |I;| < |I].

2. If I C Ugly, where the Iy need not be disjoint, then |I| <
>k k-
3. If I = Uyl and the I} are disjoint, then |I| =", |Ij].

These properties follow directly from the linearity of the Riemann
integral.

3 Probability Measures

3.1 Spaces

We here introduce the notion of a space {2 with elements w; in probabil-
ity theory this represents the sum total outcome space for an experiment.
Consider a subset of ) to be an event and a point w to be a sample point.

3.1.1 Assigning Probabilities

If we are treating 2 as a probability space, we need a method to assign
probabilities to events. It would be incredible if we had some well-defined
way to assign probabilities to events within a probabilistic space, no matter
what that event may be. However, this is impossible. Instead, we work with
subclasses of the class of all subsets of ) — the algebras and c-algebras
(also called fields and o-fields).

12



3.2 Classes of Sets

In order to continue with this special treatment of classes, we must determine
that those classes are closed under set operations. As such, we need a class
of sets that contains the intervals and is closed under countable union and
intersection. Let’s begin with the smallest possible example — the singleton
{z}, which is a countable intersection M, (z — L, 2] of intervals. Now if a
class contains all the singletons and is closed under any arbitrary number of
unions, then it must contain all subsets of {2. This is clearly too extensive for
us. Instead, we have to restrict ourselves to countable or finite set operations.

Algebra

A class .Z of subsets of €2 is an algebra if it contains (2 itself and is
closed under complement and finite union. In other words:

1. Qe .Z.
2. Ac F — A°c Z#.

3. ABe ¥ — AUBe #.

By DeMorgan’s law, AN B = (A°U B€)¢, and AU B = (A°N B°)¢, so if
% is closed under complementation and finite union, it must also be closed
under finite intersection. % is a g-algebra if it is closed under countable
unions and intersections (not just finite ones). A non-o algebra is sometimes
called finitely additive. A set in a class .% is called an % -set. Here we
explore some examples of sets such sets.

1. Consider the set of finite disjoint subintervals of Q = (0, 1]. Augment
this set with the empty set; the result is the algebra . If we let
A = (a1,d{] U ... U (am,al,], with each component interval disjoint,

then A¢ = (0,a1] U...(al,, 1] which is part of %. Likewise, defining

B analagously to A, AN B € %y and so AU B € %, therefore % is
proven to be an algebra.

2. Consider the finite-cofinite algebra, i.e. .# consisting of sets that
are finite or whose complement is finite. Then .# is an algebra and if
Q is finite, .# is a o-algebra.

3. Consider the countable-cocountable algebra, i.e. % consisting of
sets that are countable or whose complement is countable. Then % is
a o-algebra. Additionally, note that a o-algebra need not contain all

13



elements of 2 — in the case of the reals, there exist elements outside
the algebra in €2 which can be constructed from uncountable unions.

The largest o-algebra in Q is the power class 2% consisting of all subsets
of , while the smallest o-algebra consists of Q and 0.

In a normal probability or analysis problem, we are concerned with a rather
small or constrained class /. The above examples show that it is easy to
achieve sets outside of &/ using countable or finite operations. We want to
consider sets that both contain &/ and are o-algebras. To make things nicer,
we awnt these sets to be as small as possible. To this end, we define the
o-algebra generated by < as the intersection of all algebras containing

.
1. o7 Co()
2. o(&) is a o-algebra
3. If & C ¥4 and ¥ is a o-algebra then o(&) C 9.

Borel Sets and the Borel-o-Algebra

Let .# be the class of subintervals of (0,1] and let & = o(.#). The
elements of #Z are the Borel sets and % is the Borel-o-algebra.
From our previous examples, since & C By C B, 0(Hy) = B. B
contains the normal numbers, as well as all open sets of (0,1]; in a
way, it is the “biggest” o-algebra.

3.3 Probability Measures

A set function is a real-valued function whose domain is a class of subsets
of Q2. The set function P on an algebra .# is a probability measure if:

1.0<PA) <lforACZ
2. P()=0and P(Q) =1

3. if Ay, Ao, ... is a disjoint sequence of .# —sets, and if U2 Ay € .#, then
P (U Ak) => P(4) (3.1)
k=1 k=1

14



Property (3.1) is known as countable additivity. Remember that .# is
just an algebra, not necessarily a o-algebra, so it is necessary to make the
assertion that UpAy, € %. However, we have another more constrained
version of countable additivity known as finite additivity — that is,

P (U Ak> = P(A). (3.2)
k=1 k=1

If % is a o-algebra in 2 and P is a probability measure on .%, then the triplet
(Q,.#, P) is a probability measure space or a probability space. An
F-set A such that P(A) =1 is the support of the space.

From this definition, we can establish several key conclusions from classic dis-
crete probability theory, such as monotonicity, the inclusion-exclusion
principle, and Boole’s inequality (the union bound, generalized here
as finite subadditivity):

P <U Ak) <> P(A) (3.3)
k=1 =1

3.4 The Monotone Class Theorem
Note

From here onwards, our study switches from Billingsley’s text to Bass.
We no longer refer to spaces as ) and instead use X as a generalized
space and discontinue much of the probabilistic interpretation that we
have constructed thusfar to construct our definitions. We previously
used % to denote an algebra; we now use the much more appropriate

A.

We can extend the properties of an algebra A to the o-algebra A gener-
ated by Ag

Monotone Class

A montone class is a collection of subsets M of a set X such that
1. if A; 1+ A and each A; € M then A € M.
2. if A; | A and each A; € M then A € M.

15



The intersection of monotone classes is a monotone class. We arrive at
the monotone class theorem, a rather technical and nontrivial result:

Monotone Class Theorem

Suppose Ay is a o-algebra, A is the smallest o-algebra containing Ay,
and M is the smallest monotone class containing Ag. Then M = A.

4 A Brief Definition of Measures

Measure is a generalization of the concept of 1-dimensional length, 2-
dimensional area, 3-dimensional volume, etc.

Measure

Let X be a set, and A a o-algebra consisting of subsets of X. A
measure on (X,.A) is a function p : A — [0, 00| such that

1. pu(@®) =0

2. if A; € A, 1 =1,2,... are pairwise disjoint, then

Iz (U Ai) = u(Ai). (4.1)
i=1 i=1

This is just a statement of countable additivity, except now ap-
plied to a more general notion of measure as opposed to prob-
ability measures in the previous section.

In fact, we also extend the notion of a probability space to the triple
(X, A, 1) which we now call a measure space.

The following are then true about measures:

1. If A,Be€ A, and A C B, then u(A) < u(B) (monotonicity)

2. If A; C A, then p(U2,A; <372 u(A;) (countable additivity).
3. Suppose A; € A and A; T A. Then p(A) = limy, 00 (A4p).

4. Suppose A; € Aand A; | A. If pu(A;) < oo, then we have u(A) =
limy, 00 1(Ap).

16



A measure p is a finite measure if (X)) < co. A measure p is o—finite if
there exist sets E; € A such that u(E;) < oo for each ¢ and X = U°, E;. If
p is a finite measure then (X, A4, u) is called a finite measure space, and
if 41 is a o-finite measure, then (X, A, ) is a o-finite measure space.

Let (X, A, pt) be a measure space. A subset A C X is a null set if there is
a B e Awith A C B and u(B) = 0. A need not be in A. If A contains
all the null sets, then (X, A, 1) is a complete measure space. The com-
pletion of A is the smallest o-algebra A containing A such that (X, A, ji)
is complete, where [i is a measure on A that is an extension of u, that is,
a(B) = u(B) if B € A.

5 Construction of Measures

Here we theorize how we may construct measures. This is a highly complex
procedure. We want the measure m of an open interval to be that interval’s
length. Every open subset of the reals is a countable union of disjoint open
intervals. Therefore, if G = U2, (ai,b;), where (a;,b;) are disjoint, then
m(G) = > 72, (b; — a;). Then for subsets E C R, we let

m(E) = inf{m(G) : G open , E C G} (5.1)

In other words, the measure of E is the smallest measure of a union of
disjoint open intervals containing E. However, m is not a measure on the
o-algebra of all subsets of the reals; therefore, we must consider a strictly
smaller o-algebra. This is the basis of the Lebesgue theory of measure;
although, it is easier to work with half-open intervals (a, b].

5.1 Outer Measure
Outer Measure

Let X be a set. An outer measure is a function p* defined on the
collection of all subsets of X satisfying

L p*(@)=0
2. If A C B, then p*(A) < pu*(B)

3w (U2 Ai) < D02 w*(A;) when A; are subsets of X.
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The null set of an outer measure is N where p*(N) = 0. There is a well-
defined method for constructing outer measures. Suppose C is a collection
of subsets of X such that () € C and there exist Dy, Do, ... in C such that
X = U2,D;. Suppose ¢ : C + [0,00] with ¢(0) = 0. Define the outer
measure u* as:

@ (E) = inf {ZE(Ai) L AVi, E C U;?ilAi} . (5.2)
=1

5.1.1 The Lebesgue Measure

Here we briefly introduce the Lebesgue measure, which will be given more
thorough treatment in a later section. Let X = R and let C be the collection
of intervals of the form (a,b]; that is, intervals open on the left and closed
on the right. Let (1) = b —a if I = (a,b]. £(I) is the length of I. Let p*
be defined as in (5.2). Then p* is an outer measure; however, it is not an
outer measure on all subsets of R. If, however, we restrict u* to a o-algebra
L, smaller than the collection of all subsets of R, then u* will be a measure
on L. This measure is the Lebesgue measure, and £ is the Lebesgue-o-
algebra.

Let X = R and let C be the same as in section 5.1.1. Let o : R — R
be an increasing, right-continuous function (i.e. limy,,4a(y) = a(x)).
Then define p* as an outer measure by (5.2). If we further restrict u* to a
smaller o-algebra yields the Lebesgue-Stieltjes measure corresponding
to a. The Lebesgue measure is a case of the Lebesgue-Stieltjes measure
where o(z) = x.

5.1.2 The Carathéorody Theorem

If u* is an outer measure, we call A C X p*-measurable if
w(E)=p (ENA)+ u*(EnA°. (5.3)

forall F C X.
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Carathéodory Theorem

If p* is an outer measure on X, then the collection A of *-measurable
sets is a o-algebra. If p is the restriction of u* to A, then u is a
measure. Moreover, A contains all the null sets.

5.2 Lebesgue-Stieltjes Measure

Let X = R and let C be a collection of half-open intervals, with a(z) an
increasing right-continuous function. Let ¢((a,b]) = a(b) — a(a). Then the
Lebesgue-Stieltjes measure, m*, is

m*(E) = inf {Zé(Ai) L A €CVi,E C U;’ilAi} (5.4)
=1

Then m* is an outer measure, and by the Carathéodory theorem, m* is a
measure on the collection of m*-measurable sets. If K and L are two ad-
jacent intervals, i.e. K = (a,b] and L = (b,¢] then K U L = (a,c|, and
UK)4+4(L) = alc) — ala) =LK UL).

Let’s take a step back and make sure that the measure of (a, b] is appropri-
ate. Let Ji be a finite collection of half-open finite intervals covering a finite
closed interval [C, D]. Then

n

> la(br) = a(ar)] = a(D) — a(C). (5.5)

k=1

Furthermore, if a and b are finite and I = (a, b], then m*(I) = ¢(I).

In order to continue our construction of the Lebesgue-Stieltjes measure,
we make the following proposition: every set in the Borel o-algebra on
R is m*-measurable. Dropping the asterix from m®*, we retrieve m, the
Lebesgue-Stieltjes measure, known as the Lebesgue measure when
a(x) = x. In the latter case, the collection of m*-measurable sets is £, the
Lebesgue o-algebra; a Lebesgue measurable set must be L.

5.3 Examples and the Cantor-Lebesgue Function

Recall that the Cantor set is constructed as follows. Lett Fy = [0,1]. Then
Fy = Fy—(1/3,2/3). Then Fy» = F1 —(1/9,2/9) U (7/9,8/9), and continue
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to remove middle thirds. The Lebesgue measure of the Cantor set is 0. Let
fo be 1/2 on the interval (1/3,2/3); let it be 1/4 on (1/9,2/9) and 3/4 on
(7/9,8/9), etc. Define the following function, also known as the “devil’s
staircase”:

flx) =inf{fo(y):y >,y ¢ C,x <1}, f(1)=1

This function is constant on C¢; but since C' has measure 0, then any inter-
val in [0, 1] must be in C° since all open intervals have positive measure, and
thus f must be constant everywhere and therefore continuous! This function
is the Cantor-Lebesgue function, also called the Cantor function.

Instead, we could have chosen to remove the middle 1/4 — then 1/16, 1/64
and so on. Then the total removed would have been 1/4 + 2/16 + 4/64...
which is 1/2! However, just like the normal Cantor set, this set has no inter-
vals, is closed, has every point as a limit point, and is uncountable; however,
it has nontrivial measure. This is the general Cantor set.

We sometimes call the countable intersection of open sets G§, German for
geoffnet Durschnitt (open intersection), and the countable union of closed
sets as F,; (from the French fermé (closed) and the German Summe (union)).
Then in understanding Lebesgue measure, we really just have to look at Gy
and F, sets.
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5.4 The Carathéodory Extension Theorem

Let Ap be an algebra (but not necessarily a o—algebra). Then define a
measure on A as ¢ : Ay — [0,00]. Let

IU,*(E) = inf {ZE(AZ) A e Ag, E C U?ilAi} .
=1

Then:
1. p* is an outer measure
2. w(A)=1L(A)if Ae A
3. Every set in Ay and every p*-null set is u*-measurable.

4. If £ is o-finite, then there is a unique extension to o(Ap).

6 Measurable Functions

6.1 Measurability

Suppose we have (X, A), a measurable space.

Measurable Function

f X — R is measurable if {z : f(x) > a} € A for all a« € R.
Complex functions require both the real and imaginary parts to be
measurable. We can equivalently take {z : f(z) < a} and {z : f(z) <
a} and {x : f(x) > a}. If X is a metric space, A contains all the
open sets, and f is continuous, then f is measurable. Lastly, if f;
are a set of measurable functions, then sup; f;, inf; f;, limsup, f;, and
liminf; f; are all measurable if they exist.

If for two different functions f and g, {z : f(x) # g(x)} has measure 0,
then we say f = g almost everywhere (they agree at all but a countable
number of points). If a function is measurable on X with respect to the Borel
o-algebra B, we say f is Borel measurable; from the above definition, all
continuous functions are Borel measurable.
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6.2 Approximation of Functions

Characteristic

Let (X, A) be a measure space. The characteristic function of

EeAis
1 ze€kF,

XE(JC):{O 2 dE

A simple function s is a function of the form
n
s(2) = 3 axm ().
i=1

If f is a non-negative measurable function, then there is a sequence of
non-negative measurable simple functions s,, increasing to f.

6.3 Lusin’s Theorem

The following theorem is pretty but not particularly useful.

Lusin’s Theorem

Suppose f : [0,1] — R is Lebesgue measurable, m is Lebesgue mea-
sure, and € > 0. Then there is a closed set F' C [0,1] such that
m([0,1] — F) < € and the restriction of f to F' is a continuous func-
tion on F'.

7 The Lebesgue Integral

Let (X,A, ) be a measure space. Then the Lebesgue integral of the

simple function
n

s(z) =) aixe, (z)

=1

/sdu = Zai,u(Ei). (7.1)

is defined as
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If f is a measurable function, then

/fdu:sup{/sdu:()gsgf} (7.2)

If f is measurable and [ |f|dp is finite, then f is integrable.

8 Limit Theorems

8.1

Monotone Convergence Theorem

Monotone Convergence Theorem

Suppose f, is a sequence of non-negative measurable functions with
fi(x) < fo(z) < ... with

Jim fae) = f(2) (8.1)

Then lim [ fp,dp = [ fdp.

8.2

Linearity of the Lebesgue Integral

Just like the Riemann integral, the Lebesgue integral is additive, in that

4.

/(f+g)du = /fdu+/gdu- (8.2)

. If f is real-valued, measurable, and bounded and pu(X) < oo, then

ap(X) < [ fdp < bu(X).

If f and g are measurable, real-valued, and integrable and f(z) < g(z)
for all z, then [ fdu < [ gdu.

If f is complex-valued and integrable and ¢ is a complex number, then

Jefdp=c/[ fdu.
If u(A) =0 and f is measurable, then [ fxadp = 0.

Assume f,, are non-negative measurable functions. Then

/g:lfn :g:l/f”' (8.3)

If f is integrable,

<[
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8.3 Fatou’s Lemma
Fatou’s Lemma

Suppose the f,, are non-negative and measurable. Then

/lim iLlf fn <lim inf [ f,. (8.4)

n—oo

8.4 Dominated Convergence Theorem
Dominated Convergence Theorem

Suppose that f,, are measurable real-valued functions and f,(z) —
f(x) for each x. Suppose there exists a non-negative integrable func-
tion g such that |f,(x)| < g(x) for all z. Then

Jim [ fudu= | sau (8.5)

In both the MCT and DCT, the result still holds if f,, — f only almost
everywhere (this means the set of points {z : f,(z) 4 f(x)} has measure
0).

9 Properties of Lebesgue Integrals

9.1 Criteria for a function to be zero a.e.

Suppose f is measurable and non-negative and [ fdp = 0. Then f =0 a.e.

Suppose f is real=valued and integrable and for every measurable set A
we have [, fdu =0. Then f =0 a.e.

Let m be Lebesgue measure and ¢ € R. Suppose f : R — R is integrable
and [ f(y)dy = 0 for all z. Then f =0 a.c.

9.2 An approximation result

Suppose f is a Lebesgue measurable real-valued integrable function on R.
Let € > 0. Then there exists a continuous function g with compact support
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such that

/\f —gl<e. (9.1)

10 The Riemann Integral

Here we compare the Lebesgue and Riemann integrals. First, recall the
Darboux construction of the definition of the Riemann integral. As we have
reserved the integral symbol [ for the Lebesgue integral, we use R(f) to
denote the Riemann integral of f. Let P be a partition {zg,x1,...,zn} of
the region of integration [a,b] with 9 = a and z, = b. Then the upper
Darboux sum is

U(Rf)zZ( sup f(:v)> (i — 2101).
i—1 \Ti-152<Ty

The lower Darboux sum is similarly

zi—1<x<z;

L(P,f) = zn: < inf f(x)) (s — 2im1)-

i=1
The upper and lower Darboux integrals are then
R(f) =f{U(P, f)}, R(f)=sup{L(P, f)}
over all partitions P. The Riemann integral R(f) exists if R(f) = R(f),
and the value they attain is the value of R(f).
10.1 Comparison with the Lebesgue integral

A bounded real-valued function f on [a, b] is Riemann integrable if and only
if the set of points at which f is discontinuous has Lebesgue measure 0, and
in that case, f is Lebesgue measurable and the Riemann integral of f is
equal in value to the Lebesgue integral of f.

11 Types of convergence

Almost everywhere convergence

If 1 is a measure, we say a sequence of measurable functions f, con-
verges almost everywhere to f and write f, — f a.e. if the set

{z : fu(x) # f(z)} has measure 0.
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fn converges in measure to f if for all € > 0,

p{z : [fu(z) = f(2)] > €}) = 0 (11.1)

as n — 0o. For 1 < p < oo, we say f, converges in L? to f if

/Ifn—fl”du—>0 (11.2)

as n — o0.

11.1 Chebyshev’s Inequality

Here we show how convergence in LP corresponds to convergence in measure.

Chebyshev’s Inequality

ulla: 1f@) = o) < LA (11.3)

As a result, if f,, converges to f in LP, then it converges in measure.

11.2 Egorov’s Theorem

Suppose p is a finite measure, € > 0 and f, — f a.e. Then there exists a
measurable set A such that pu(A) < ¢ and f, — f uniformly on A¢. This
kind of convergence is known as almost uniform convergence, but it is
not particularly useful.

12 Signed Measures

Signed measures are measures which are allowed to take both negative and
positive values.

12.1 Positive and Negative Sets
Signed Measure

Let A be a g-algebra. A signed measure is a function g : A —
(—ooo0) such that (@) = 0 and if Ay, As, ... are pairwise disjoint and
all the A; are in A then p(U2,A;) = >, u(A;), where the series
converges absolutely if p(U°; A;) is finite.
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A set A € Ais a positive set for p if u(B) > 0 for BC A and B € A.
A € Ais a negative set if y(B) < 0for BC Aand Be€ A. If u(B) =0
for BC A and B € A, then A is a null set.

12.2 Hahn Decomposition

Recall that AAB = (A—B)U(B—A). The Hahn decomposition theorem
asserts that if X has a signed measure p, then X can be decomposed into
a positive set where p acts as a positive measure and a negative set where
—u acts as a positive measure.

1. Let u be a signed measure taking values in (—o0,00). There exist
disjoint measurable sets £ and F' in A whose union is X and such
that E is a negative set and F' is a positive set.

2. If £’ and F’ are another such pair, then EAE' = FAF' is a null set
with respect to p; thus the decomposition is “unique” (modulo null
sets).

3. If p is not a positive measure, then p(E) < 0. If —u is not a positive
measure, then p(F) > 0.

Two measures u, v are mutually singular if there exist disjoint sets F, F
in A whose union in X with p(E) = v(F) = 0; this is written as p L v.

12.3 Jordan Decomposition

If v is a signed measure on a measurable space (X,.A), there exist positive
measures ut and p~ such that g = pu* — p~ and p* and g~ are mutually
singular. This decomposition is unique.

Proof: Let F and F be negative and positive sets, respectively for a signed
measure 4 such that X = FUF and ENF = 0. Let ut(A4) = p(ANF),
p (A) = —p(AN E). This yields the desired decomposition.

Imagine that ;4 = v+ — v~ is a second, distinct decomposition from the one
described, with v, v~ mutually singular. Let E’ be such that vT(E') =0
and v~ (E'¢) = 0. Let F/ = E'°. Then X = E'UF' and E'NF' = . If
A C F'then v=(A) < v (F) =0, so vT(A) > 0 and F’ is a positive set;
similarly E’ is a negative set. Then E’ and F’ gives a Hahn decomposition
of X. As the Hahn decomposition is unique modulo null sets, FAF’ is a
null set with respect to u, as is EAE'. Now since v (E') = v~ (F') =0, we
must have v = u™ and v~ = = acting on sets A € A. O
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13 The Radon-Nikodym Theorem

So far, given countable additivity, we can say definitively that

V(A):/Afd,u (13.1)

is a measure. Here we examine a theorem that informs us of the converse;
that, given p and v, when does there exist an f such that (13.1) holds?
13.1 Absolute Continuity

A measure v is absolutely continuous with respect to p if v(A) = 0
whenever p(A) = 0. We write v < pu. More formally, v < p if and only if
for all € there exists ¢ such that u(A) <0 = v(A) <e.

13.2 Main Theorem
Radon-Nikodym Theorem

Suppose p is a o-finite positive measure on a measurable space (X, .A)
and v is a finite positive measure on (X,.4) such that v is absolutely
continuous with respect to p. Then there exists a p-integrable non-
negative function f which is measurable with respect to A such that

v(4) = [ s
A
for all A € A. If g is another such function, then f =g a.e. w.r.t p.

f is the Radon-Nikodym derivative of v w.r.t p (sometimes the density
of v w.r.t ), written f = g—z. A common formulation is

dv = fdpu. (13.2)

13.3 Lebesgue Decomposition

The Lebesgue decomposition theorem gives another decomposition of
measures. Suppose u is a o-finite positive measure and v is a finite positive
measure. Then there exist positive measures A, p such that v = A4p, p < p,
AL .
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14 Differentiation

Our approach to differentiation uses what are known as maximal functions
in combination with the Radon-Nikodym theorem and Lebesgue decompo-
sition.

The definition of derivative is from elementary calculus. f is differentiable

at x if
o St — (@)
h—0 h

(14.1)

exists; the limit is called the derivative of f at x and is denoted f’(z).
f is differentiable on [a,b] if f/(x) exists for all € (a,b) and the positive
and negative limits of (14.1) exist. The ultimate goal of this section is to
construct the Fundamental Theorem of Calculus.

14.1 Hardy-Littlewood Maximality

Consider real-valued functions on R"™. Let B(xz,r) be the open ball with
center x and radius r. The following proposition is what we call a covering
lemma.

Suppose E C R"™ is covered by a collection of balls {B,} and there ex-
ists a positive real number R such that the diameter of each B, is bounded
by R. Then there exists a disjoint sequence By, B, ... of elements of {B,}
such that

m(E) < 3" m(By). (14.2)
k

f is locally integrable if [ i |f(x)|dx is finite for K compact. If f is locally
integrable, define

1
MIw) = sup s [ 1wy (143)

The function M f is the maximal function of f, and M is known as the
Hardy-Littlewood maximal operator.

Then we get the main inequality of the section; a weak 1-1 inequality
(also attributed to Hardy and Littlewood). This inequality does not map
integrable functions into integrable functions, but (in a way) comes close to
doing so.

m({z: Mf(z) > B}) < Z / (@) ldx (14.4)
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Note that M f for f = xp is not integrable, showing the weakness of the
inequality.

There are two further results, of increasing strength, that help us deter-
mine the first half of the Fundamental Theorem of Calculus. The weaker:

Let
1

fr(z) = m(B(m,r))/B(m)f(y)dy (14.5)

If f is locally integrable, then f, — f a.e. as r — 0. The stronger: for
almost every z,

1

TG oo 1F0) = @y =0 "

as r — 0.

14.2 Antiderivatives

Here we determine that the derivative of the antiderivative of an integrable
function is the function itself. Let B(x,h) in R be the interval (z — h,x + h)
(the h-ball about x). m is Lebesgue measure as is standard. The indefinite
integral or antiderivative of an integrable function f is

Plz) = / F(#)dt. (14.7)
F is then differentiable a.e. and F'(z) = f(z) a.e.

14.3 Increasing Functions

Here we assert that increasing functions are differentiable almost every-
where, starting with right continuity.

Suppose H : R — R is increasing, right continuous, and constant for z > 1
and x < 0. Let A be the Lebesgue-Stieltjes measure defined using the func-
tion H and suppose A and m are mutually singular. Then

L AB@.)

r—0m(B(z, 1)) 0

for almost every x with respect to m.

30



Now let F': R — R be an increasing and right continuous function. Then
F’ exists a.e. Moreover, F’ is locally integrable and for every a < b,
fab F'(x)dz < F(b)—F(a). In fact, we can further generalize this and remove
our requirement for right continuity, sacrificing local integrability; in other
words, an increasing function has a derivative which exists a.e. such that

/b F'(z)dz < F(b) — F(a) (14.8)
when a < b.

14.4 Bounded Variation

A real-valued function f is of bounded variation on [a, b] if

k
Vﬂmﬂ=$m{§:vwﬁ—fmFM} (14.9)

i=1

f is Lipschitz continuous if there exists ¢; > 0 such that

[f(y) = f(2)] < erly — = (14.10)

for all x,y. If f is Lipschitz continuous then f must also be of bounded
variation.

The most important result here is the following: if f is of bounded vari-
ation on [a,b], then f can be written as f = f; — f2, where f; and fy are
increasing functions on [a, b]. This, along with (14.8), shows that functions
of bounded variation are differentiable a.e.

14.5 Absolutely Continuous Functions
Absolutely Continuous Function

A real-valued function is absolutely continuous on [a,b] if given ¢
there exists d such that S>F_ |f(bi) — f(a;)| < & whenever {(a;,b;)}
is a finite collection of disjoint intervals with Zle b —a;| <o. If f
is absolutely continuous, then it is of bounded variation.

Furthermore, if we decompose f into fi — fo, as in the previous subsec-
tion, then f; and fy are also absolutely continuous.
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If F' is absolutely continuous, then F” exists a.e., is integrable, and
b
/ F'(z)dz = F(b) — F(a).

Proof: Suppose F' is increasing and absolutely continuous. Let v be the
Lebesgue-Stieltjes measure. Since F' is continuous, F(d) — F(c) = v((c,d)).
Letting k — oo, we see given ¢ there exists a § such that Zle |F(b;) —
F(a;)| < € whenever {(a;,b;)} is a finite collection of disjoint intervals with
Zle |b; — a;| < 0. Since any open set G is the union of disjoint intervals
{(a;,b;)}, we can rewrite this as

v(G) =Y vl(aibi)) =Y (F(b) = Flai)) < e
i=1 i=1

whenever G is open with m(G) < 6. If m(A) < § and A is Borel measurable,
then there exists an open G containing A such that m(G) < § and v(A) < e
so v < m. Then by Radon-Nikodym there exists a non-negative integrable
f such that

V(A) = /A fdm

for all Borel measurable sets A. In particular,

F(a) - Fla) ~ vl(a.)) = [ " )y

By (14.7) F' = f a.e. Setting x = b we have

b
F(b) - F(a) = / F'(y)dy.

15 L? Spaces (Lebesgue Spaces)

15.1 Norms, Holder’s Inequality, Minkowski’s Inequality

Let (X, A, n) be a o-finite measure space. For 1 < p < oo, the LP norm of

fis
111 = ([ 1760)Pan) " (15.1)
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If p = oo then the L*° norm is
[flloo = nf{M = 0: u({z : [f(z)| = M}) = 0}. (15.2)

In other words, the L* norm of a function is the smallest value which upper
bounds f a.e.

The LP space is the set {f : || f||, < oo}. If 1 < p < o0, then the conjugate
exponent of p is the number ¢ such that 1/p+1/¢g = 1.

Holder’s Inequality

1

Ifl1<p,g<oo,p'+¢g!'=1,and f and g are measurable, then

/ Faldi < [ lallglle (15.3)

This also holdsif p=occandg=1lorp=1and g =o00. If p=¢q =2,
this is the Cauchy-Schwarz inequality.

This conclusion allows us to arrive at Minkowski’s Inequality, a general-
ized version of the triangle inequality.

Minkowski’s Inequality

If 1 <p < oo and f, g are measurable, then
1+ gllp < [1f1lp + [lgllp-

Here, we may be tempted to call LP a normed linear (vector) space (as
a brief review, a normed vector space is a vector space with a norm defined
on it such that ||z > 0 with ||z|| = 0 <= =z = 0, |[cz| = ||||z|, and
lz 4+ y|l < |lz|| + |ly||, for all z,y € X). The reason we cannot do this is
because the || f||, being 0 need not imply that f is 0, only that f is 0 almost
everywhere. To circumvent this, we define an equivalence relation — we call
two functions equivalent if they differ on a set of measure 0, and L? is the
set of appropriate equivalence classes.

15.2 Completeness

If 1 < p < oo, then LP is complete. Furthermore, the set tof continuous
functions with compact support is dense in LP(R) for 1 < p < co. Finally,
the set of continuous functions on [a, b] are dense in L?([a, b]) with respect
to the L?([a, b]) norm.
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15.3 Convolutions

Assume all functions here are on R™ with the Lebesgue measure on R™. The
convolution of two measurable functions f and ¢ is defined by

fxg(z) = / £ — v)g(y)dy

provided the integral exists.

Suppose f and g are Borel measurable; if a € R then A = f~1((a,00))
is a Borel measurable subset of R. Then K : R? - R, K(x,y) = v —y
is Borel measurable. Then with X = R? and the Borel oc—algebra on R?,
K~ Y(A) e Aso

(f oK) ((a,00)) = K7 ((a,00))) = K~'(A)

is a Borel subset of R?; we conclude that f o K is Borel measurable, as is g¢.
As the integrand is jointly measurable, f * g is a Borel measurable function
of x. By change of variables, fx g = g * f.

1. If f, g€ L', then fxg € L' and
1 * gllx < [l fll2llgllz-

2. If 1 <p<oo, feL'and g € LP then

1F* gllp < 111 llgll-

We can use convolutions to approximate functions in LP by smooth func-
tions, a process known as mollification. Let ¢ : R® — R be infinitely
differentiable with compact support, non-negative, and integrating to 0. Let

pe(z) = e "p(/c).
[ * . is infinitely differentiable. For non-negative integers {ay}_:

92k w(f*pe) . 92k Uk,
[T, 0" [T, 0z

f*pe — fae ase — 0. If fis continuous, then f * . — f uniformly on
compact sets as € — 0. Finally, f * ¢, in LP.
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16 Topology

This is the final section of this course, which deals with general topological
spaces, compactness, connectedness, separation, embeddings, and approxi-
mation. We begin this (very large) section with an extensive set of defini-
tions.

Topology

Let X be a set. A topology T is a collection of subsets of X such
that

1. X,0eT

2. If G, € T for each « in a non-empty indexing set I, then
UacrGa € T (the countable union of the elements of T isin T)

3. If G1,..G,, € T, then N'G; € T (the finite intersection of the
elements of 7 is in T)

A topological space is a set X with a topology T defined on it.
An element G € T is called an open set; a set I is closed if F°€ is
open. If T consists of all subsets of X, it is the discrete topology.
If T ={0,X}, it is the trivial topology.

Say we have a metric space (X, d). Then G C X is oipen in (X, d) if, when
x € G, there exists ry such that B(x,r,;) C G with B(z,ry) = {y : d(z,y) <
ryz}. If T is the collection of open sets, (X, T) is a topological space gener-
ated by the metric d.

We now re-introduce some ideas from elementary analysis. Let A C (X, T)
(note this does not mean A € T'). Then x € X is an interior point of A if
x C G C A. The set of interior points of A is A°, the interior of A.

A point z, not necessarily an element of A, is a limit point of A if ev-
ery open set that contains z contains a point of A other than x. The set of
limit points is sometimes denoted A’. The closure of A is A = AN A’. The
boundary of A, written 0A, is A— A°. x is an isolated point if x € A— A’
(a point which is not a limit point).

As an example, let X be the real line. Let the topology T be generated
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from the usual metric d(z,y) = |x — y|. Let A = (0,1]. Then A° = (0,1),

A =10,1], A= [0,1], and 94 = {0, 1}.

A set in A is a neighborhood of z if x € A°. If A is both a neighbor-
hood and and open set, it is called an open neighborhood.

Now we discuss the case of multiple topologies. Let (X, 7 ) be a topological
space and let Y C X. If welet Y = {GNY : G € T}, then if U satisfies the
definitions applied to subsets of Y, (Y,U) is a subspace of (X, T). U is the
relative topology.

Given two topologies T and 7', with T C T’, we call T a weaker or
coarser topology and T’ a stronger or finer topology.

Suppose (X, T) is a topological space and ~ an equivalence relation for
X. Let X be the set of equivalence classes, and let £ : X — X map an
element to its equivalence class. Then the quotient topology is
U={ACX:EY(A)eT}

A subcollection B of 7 is an open base if every element of 7 is a union
of sets in B. A subcollection S of T is a subbase if the collections of finite
intersections of elements in S is an open base of T .

Any collection C of subsets of X generates a topology 7 on X, with T
being the smallest topology with C as a subbase. Suppose [ is an index set
and for each a € I, (X, T o) is a topological set. Let X = [[,.; Xa, and let
T be the projection of X onto X,. Then the topology Co = User{m,1(A) :
A € T,} is the product topology.

A subcolletion B, of open sets containing the point x is an open base
at point z if every open set containing x contains an element of B,. If the
closure of A has empty interior, A is nowhere dense. X is separable if
there exists a countable subset of X that is dense in X. If X has a countable
base, it is called second countable. A topological space is first countable
if every point x has a countable open base at x. For a metric space X, X is
second countable if and only if it is separable.

I is a directed set if it has an ordering < that satisfies identity, transi-

tivity, and upper bound. A net is a mapping from a directed set I into a
topological space X. A net (z,),a € I converges to a point y if, for each
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open set GG containing y, there is an ay € I such that z, € G whenever
a > «ap. If there is a net with infinitely many points in £ C (X, T) that
converges to y, then y is a limit point of E. Note that there is no concept
of “almost everywhere” convergence in topology.

We conclude this set of definitions by discussing continuous functions.

Homeomorhpism

Suppose we have two topological spaces, (X,T) and (Y,U). Then
f: X — Y is continuous if f~}(G) € T for G € U. f is open if
f(H)eU if He T. fis called a homeomorphism if it is one-to-
one, onto, continuous, and open. In this case, openness is equivalent
to saying that f~! is continuous.

16.1 Compactness

An open cover of A C (X,T) is a non-empty collection of open subsets,
{G4}, such that A C UyerGo. A subcover is a collection of {G,} that also
covers A. A is compact if every cover of A has a finite subcover. A closed
subset of a compact set is compact.

A set A is precompact if A is compact. A is o-compact if there exist
K1, Ko, ... compact such that A = UK;. A is countably compact if every
countable cover of A has a finite subcover.

A is sequentially compact if every sequence of elements in A has a sub-
sequence converging to a point in A. A has the Bolzano-Weierstrass
property if every infinite subset of A has a limit point in A.

16.2 Tychonoff’s Theorem

Zorn’s Lemma

If Y is a partially ordered set and every linearly ordered subset of Y
has an upper bound, then Y has a maximal element. Zorn’s Lemma
is functionally equivalent to the axiom of choice.

Let (X,T) be a topological space, let B be a basis for 7, and let S be a
subbasis. If A C X and {G,} is an open cover for A such that each G, € B,
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then {G,} is a basic open cover; if G, € S, then {G,} is a subbasic
open cover.

Suppose A is a subset of X and every basic open cover of A has a finite
subcover. Then A is compact. Using Zorn’s lemma, we can additionally
show the following: let A be a subset of X. Suppose C C & are two col-
lections of open subsets of X and suppose that no finite subcollection of C
covers A. Then there exists a maximal subset D of £ that contains C and
that no finite subcollection of D covers A. We can then use the existence of
this maximal subset to show that, if ever subbasic open cover of A has a fi-
nite subcover, then A is compact. The culmination of all of these statement
reveals the following:

Tychonoff’s Theorem

The non-empty product of compact topological spaces is compact.

16.3 Compactness and Metric Spaces

Let X be a metric space with metric d. A set A is a bounded set if there
exists z9p € X and M > 0 such that A C B(xg, M). If A is a compact subset
of am metric space X, then A is closed and bounded. Additionally, A has
the Bolzano-Weierstrass property if and only if it is sequentially compact.
Finally, the following statements are equivalent:

1. A is compact;
2. A is sequentially compact;

3. A has the Bolzano-Weierstrass property.

Heine-Borel Theorem
A subset of R™ is compact if and only if it is closed and bounded.
Given a set A, an € — net for A is a subset {1, x9,...} such that {B(z;,¢)}

covers A. A is totally bounded if for each ¢ there exists a finite e—net.
A C (X, d) is compact if and only if it is both complete and totally bounded.

If (X,dx) and (Y,dy) are metric spaces, then f : X — Y is uniformly

continuous if given ¢ there exists § such that dy (f(x), f(y)) < € whenever
dx(z,y) <. If X is a compact metric space and Y is a metric space, then
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if f: X — Y is continuous then it is uniformly continuous.

If X and Y are metric spaces, ¢ : X — Y is an isometry if dy (p(z), ¢(y)) =
dx(z,y) for all z,y € X where dx is the metric for X and dy is the one
for Y. A metric space X* is the completion of X if there is an isometry
¢ : X — X* such that ¢(X) is dense in X* and X* is complete. All metric
spaces have a completion.

16.4 Separation Properties

Here we have some different kind of spaces.

A topological space X is a Ty space or Kolmogorov space if, when-
ever x # y, there exists an open set G such that either x € G,y € G or
yeG,x ¢QG.

X is a T} space if, whenever x # y, there exists an open set G containing
x which does not contain y and an open set H containing y which does not
contain .

X is a Ty or Hausdorff space if whenever x # y, there exist disjoint open
sets G and H such that x € G and y € H. GG and H separate x and y.

X is a completely regular space or Tykhonov space or T;1 space if X
2

is a T1 space and whenever F' C X is closed, x ¢ F, there is a continuous
real valued function such that f(z) =0 and f(y) =1 for y € F.

X is a normal space or Ty space if X is a T} space and whenever F
and F' are disjoint and closed, there exist open sets G and H such that
EFCGand FCH.

16.4.1 Separation Properties

Singletons of T spaces are closed. Furthermore, the product of a non-empty
class of Hausdorff spaces is Hausdorff; then compact subsets of a Hausdorff
space are closed. A compact Hausdorff space is normal.

16.5 Urysohn’s Lemma

Urysohn’s lemma shows that normal spaces have a plentiful supply of con-
tinuous functions. Disjoint closed subsets of compact Hausdorff spaces can
be separated by continuous functions. Urysohn’s lemma is the following:
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Urysohn’s Lemma

Let E and F' be disjoint closed subsets of a normal space X. There
exists a continuous real-valued function taking values in [0, 1] such
that f=0on E and f =1 on F.

As a corollary, if X is a compact Hausdorff space, K is a com-
pact subset of X, and G is an open subset of X containing K, then
there exists a continuous function f that is 1 on K and such that the
support of f is contained in G.

16.6 Tietze Extension Theorem

Suppose f : C' x C — [0,1] is continuous (C' is the middle-thirds Cantor
set). Can we extend f so that f :[0,1]?> — [0,1] is continuous?

Tietze Extension Theorem

Let X be normal, F' a closed subspace, and f : F' — [a, b] a continuous
function. There exists a continuous function f : X — [a,b] which is
an extension of f, that is f |p= f.

16.7 Urysohn Embedding Theorem

Compact Hausdorff spaces can sometimes substitute for metric spaces. To
be more specific, Hausdorff spaces that are second countable can be made
into metric spaces! This is the the remark made in the Urysohn embed-
ding theorem (equivalently the Urysohn metrization theorem). (X, 7T ) is
metrizable if there is a metric d such that a set is open with respect to d if
and only if it is in 7. More precisely, if z € G € T, there exists an r—ball
such that B(z,r) C G and B(x,r) € T for each x and r > 0.

We can embed second countable normal spaces into [0, 1]V, with the metric
in question being
e .
d(w,y) =) 27 |wi = yil.
i=1
Formally, the Urysohn embedding theorem states that for a second countable

normal space X, there exists a homeomorphism ¢ of X onto a subset of
[0,1]"; in particular, X is metrizable.

40



16.8 Alexandroff One-Point Compactification

A topological space is locally compact if each point has a neighborhood
of compact closure. Let (X, 7) be a locally compact Hausdorff space. Let
oo denote a point not in X and let X* = X U {oco}. Define T* to consist
of X*, all elements of 7, and all sets G C X™* such that G¢ is compact in
(X,T). Then (X*,T*) is a compact Hausdorff space. X* is known as the
Alexandroff one-point compactification of X.

16.9 Stone-Cech Compactification

Given a completely regular space X, we can find a compact Hausdorff space
X such that X is dense in X and every bounded continuous function on
X can be extended to a bounded continuous function on X. This is the
Stone-Cech compactification! of X, written as 3(X). This theorem is
incredibly useful; the function f(z) = sin(1/z) on (0, 1] cannot be extended
o0 [0,1], so B(X) # [0, 1]; however, there is a compactification of (0,1] for
which f does have a continuous extension.

Stone-Cech Compactification

Let X be a completely regular space. There exists a compact Haus-
dorff space 5(X) and a homeomorphism ¢ mapping X into a dense
subset of B(X) such that if f is a bounded continuous function from
X to R, then f o~ ! has a bounded continuous extension to 3(X).
Density ensures that only one such extension exists for each function.

16.10 Ascoli-Arzela Theorem

This theorem is especially powerful; it is a simple way to check whether a
collection of continuous functions on a compact Hausdorff space contains a
sequence with a uniformly convergent subsequence. While this is common
in introductory analysis, the variant here is that we allow X to be a com-
pact Hausdorff space, and can be proven without relying on diagonalization.

Let X be a compact Hausdorff space and C(X) be the set of continuous func-
tions on X. Compactness ensures f(X) is compact and therefore bounded.

d(f,g) = sup f(z) — g(z)|

1The “C” in Cech is accented with a caron, which unfortunately does not render in
this document.
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then transforms C(X) into a metric space.

F C C(X) is equicontinuous if, given ¢ and x there is an open set G
containing = such that if y € G and f € F, then |f(y) — f(z)| < e. The
same G must work for every f € F, making equicontinuity stronger than
continuity.

Ascoli-Arzela Theorem

Let X be a compact Hausdorff space and let C(X) be the set of
continuous functions on X. Then F C C(X) is compact if and only
if:

1. F is closed;
2. supser |f(w)] < oo for each z € X;

3. F is equicontinuous.

16.11 Stone-Weierstrass Theorems

The Stone-Weierstrass theorems allow one to approximate continuous func-
tions. We begin by introducing the Weierstrass approximation theo-
rem, which allows for approximating real-valued functions on a compact
interval.

Let [a,b] be a finite subinterval of R, g a continuous function on [a,b] and
e > 0. Then there exists P(z) such that

sup [g(z) — P(z)| <e.
z€a,b]

This can be proven using some ideas from earlier in this course. For instance,
if we let g(x) be a Gaussian of 0-mean and fS-standard deviation. Using
the DCT one may show that g has compact support and is continuous. The
convolution g * pg(x) is close to g uniformly as 8 vanishes. Then ¢g(x) can
be approximated by a polynomial via Taylor series; all that remains is a
change of variables to conclude.

Let X be a topological space, with C(X) the set of real-valued continu-

ous functions on X. A C C(X) is an algebra of functions if A is closed
under addition and multiplication (note .4 is not necessarily a ring algebra,
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as no claim is made about unity, commutativity, or associativity). If A is
closed under minimum and maximum, it is a lattice of functions. A sep-
arates x # y if there exists f € A such that f(x) # f(y). A vanishes at
no point of X if whenever x € X, there exists g € A with g(z) # 0.

Stone-Welierstrass Theorems

Suppose X is a compact Hausdorff space and A is an algebra of
real-valued continuous functions that separates points and vanishes
at no point. Then A is dense in C(X).

Now suppose X is a compact Hausdorff space and C(X,C) is
the set of complex-valued continuous functions on X. Let A be
an algebra of continuous complex-valued functions that separates
points and vanishes at no point. Suppose in addition that f is in A
whenever f is in \A. Then the closure of A is C(X,C).

17 Special Topics

These are special topics that do not directly relate to any of the texts
(Billingsley, Bass, Munkres). However, they are both interesting and useful,
and are therefore included in these notes for reference should they appear
in a future iteration of this course.

17.1 Brief Intro to Ergodic Theory

(Notes from Grundlehren der mathematischen Wissenchaften by Cornfield,
Fomin, Sinai, and Sossinskii). This subsection only covers part of the first
chapter.

Erdogic theory is the study of motion in a measure space. Particular
spaces that are relevant to the study of erdogic theory are (1) the m-
dimensional torus with the normalized Haar measure; (2) an m-dimensional
compact closed oriented C'°°-class manifold with the differential measure;
(3) the space of sequences where each coordinate assumes values from a
fixed finite or countable set; (4) the space of real-valued functions. An au-
tomorphism of a measure space is a bijection T such that u(A) = u(TA) =
w(T~1). An endomorphism is a surjection T of a measure space M onto
itself such that u(A) = u(T~LA).
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17.1.1 Liouville’s Theorem

Suppose {T"*} is a one-parameter group of automorphisms of a measure space
and t € R, with T = T*(T*%). Then {T"} is a flow if for any measurable f
on M the function f(T%x) is measurable on M x RL. If {T} is a semigroup,
we equivalently define a semiflow.

Liouville’s Theorem

The measure p with density p of class C'°, i.e. the measure with
differential du = p(z)dwy...dz,, is invariant to {T*} if and only if we
have

17.1.2 Poincaré Recurrence
Suppose T is an endomorphism of (M, A, u) and A € A. Then z € Ais a

recurrence point if 7"(z) = A for at least one n > 0.

The Poincaré Recurrence Theorem suggests that for any endomorphism
T and any A € A p-a.e. x € A is a recurrence point.

17.1.3 Birkhoff-Khinchin Ergodic Theorem

Suppose (M, A, i) is a space with normalized measure and f € L' on this
space. Then for p-a.e. x € M, the following limits exist and are equal to
each other:

n—1 n—1 n
1 ho o1 S| N
Jim kEOf(T z) = lim — kEOf(T ) =5 kE_ f(Tx).

17.2 Henstock-Kurzweil Integration

(Notes from The Kurzeil-Henstock Integral for Undergraduates by Fonda).
The Henstock-Kurzweil integral is a generalization of the Lebesgue and Rie-
mann integrals. While sin(1/z) is not Lebesgue integrable and 1g is not

Riemann integrable, both functions are Henstock-Kurzweil integrable.

Let P be a tagged partition of [a,b]; that is, a partition a = uy < ... <
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u, = b with a tag associated with each interval, ¢; € [u;j—1,u;]. Let the
Riemann sum for a function f be

Zf Zf )Au;.

Let § : [a,b] — (0,00). § is called a gauge; a partition is d-fine if [u;—1, u;] C
[ti — 0(ti),t; + 6(t;)]. Then I is the Henstock-Kurzweil integral of f if
for every € > 0 there exists a gauge 0 such that whenever P is § — fine,

S
P

< E.

17.3 Basic Algebraic Topology

(Notes taken from Algebraic Topology by Hatcher). Some background in
abstract algebra is helpful in understanding this section.

A path in a space X is a continuous map f : I — X where [ is the unit inter-
val. We precisely define the idea of continuously deforming a path, keeping
its endpoints fixed. A homotopy of paths in X is a family f; : I — X, such
that f:(0) = zp and fi(1) = 1 are independent of t; F': I x I — X defined
by F(s,t) = fi(s) is continuous. When two paths fy and f; are connected
by such a homotopy, they are called homotopic. The equivalence class of
a path under the equivalence relation of homotopy is called the homotopy
class of f, and is denoted [f].

Suppose we restrict our attention to paths with the same starting and ending
point. These paths are called loops, and the common starting and ending
point is called a basepoint. The set of all homotopy classes of loops at the
same basepoint is denoted 71(X,zp). This set is a group with respect to
[f % ¢, and is known as the fundamental group of X at xo.

A set is path connected if there exists a path connecting every pair of
points, such that the path is contained in the set. X is simply connected
if there is a unique homotopy class of paths connecting any two points in X;
in other words, if it is path-connected and has a trivial fundamental group.
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