
Math 128A Notes

Kanyes Thaker

Spring 2020

0.1 Introduction

This document is an overview of Math 128A, Numerical Analysis, at UC
Berkeley. These notes are largely based off of Numerical Analysis by Richard
L. Burden and J. Douglas Faires and lectures by Dr. Per-Olof Persson.
This is an introductory class to numerical methods, and these notes assume
a good understanding of calculus and differential equations. Some linear
algebra and analysis experience may be helpful, but is not necessary. These
are not a replacement for lectures or discussions, but should provide a good
enough overview to review for exams!

1

Contents

0.1 Introduction . 1

1 Mathematical Preliminaries and Error Analysis 4
1.1 Review of Calculus . 4

1.1.1 Differentiability . 5
1.1.2 Integration . 6
1.1.3 Taylor Polynomials and Taylor Series 7

1.2 Round-off Errors and Computer Arithmetic 7
1.2.1 Binary Machine Numbers 7
1.2.2 Decimal Machine Numbers 8
1.2.3 Finite-Digit Arithmetic 8

1.3 Algorithms and Convergence 9

2 Solutions of Equations in One Variable 9
2.1 The Bisection Method . 9
2.2 Fixed-Point Iteration . 10

2.2.1 Fixed-Point Iteration 11
2.3 The Newton-Raphson Method and Extensions 11

2.3.1 Newton’s Method . 12
2.3.2 The Secant Method 12
2.3.3 Regula Falsi . 13

2.4 Error Analysis for Iterative Methods 14
2.5 Accelerating Convergence . 15

2.5.1 Aitken’s ∆2 Method 15
2.5.2 Steffensen’s Method 16

3 Interpolation and Polynomial Approximation 16
3.1 Interpolation and the Lagrange Polynomial 17

3.1.1 Lagrange Interpolating Polynomials 18
3.2 Divided Differences . 18

3.2.1 Backward Differences 20
3.3 Hermite Interpolation . 21

3.3.1 Hermite Polynomials from Divided Differences 22
3.4 Cubic Spline Interpolation . 22

4 Numerical Differentiation and Integration 23
4.1 Numerical Differentiation . 24

4.1.1 Three-Point Formulas 25

2

4.2 Richardson’s Extrapolation 26
4.3 Elements of Numerical Integration 27

4.3.1 The Trapezoidal Rule 27
4.3.2 Simpson’s Rule . 28
4.3.3 Newton-Cotes Formulas 28

4.4 Composite Numerical Integration 29
4.5 Adaptive Quadrature Methods 30
4.6 Gaussian Quadrature . 31

4.6.1 Legendre Polynomials 31
4.7 Quadrature for Multiple Integrals 32

4.7.1 Gaussian Quadrature for Double Integral Approxima-
tion . 34

4.8 Improper Integrals . 34
4.8.1 Left Endpoint Singularity 35
4.8.2 Infinite Singularity . 36

5 Initial-Value Problems for Ordinary Differential Equations 36
5.1 The Elementary Theory of Initial-Value Problems 37
5.2 Euler’s Method . 39
5.3 Higher-Order Taylor Methods 40
5.4 Runge-Kutta Methods . 41

5.4.1 Runge-Kutta Methods of Order Two 41
5.4.2 Higher-Order Runge-Kutta Methods 42

5.5 Higher-Order Equations and Systems of Differential Equations 43
5.6 Multistep Methods . 45

5.6.1 Predictor-Corrector Models 47
5.7 Stability . 48

5.7.1 One-Step Methods . 48
5.7.2 Multistep Methods . 49

5.8 Stiff Differential Equations . 51

6 Direct Methods for Solving Linear Systems 52
6.1 Linear Systems of Equations 53

6.1.1 Matrices and Vectors 54
6.2 Pivoting Strategies . 55
6.3 Linear Algebra . 56
6.4 Determinants . 58
6.5 Matrix Factorization . 59
6.6 Special Matrices . 60

3

1 Mathematical Preliminaries and Error Analysis

We begin with a basic review of key concepts. There is very little explanation
these first few pages; they’re mostly here as a basic calculus review.

Key Topics

• 1.1: Limits, Continuity, Differentiability, Generalized Rolle’s
Theorem, Mean Value Theorem, Extreme Value Theorem, In-
termediate Value Theorem, Riemann Integral, Taylor’s Theo-
rem

• 1.2: Round-off Error, Binary Machine Numbers, IEEE FLoat-
ing Point Arithmetic Standard 754-2008, Signed Bit, Exponent,
Characteristic, Mantissa, Overflow, Underflow, Decimal Ma-
chine Numbers, Chopping and Rounding, Absolute and Relative
Error

• 1.3: Algorithm, Big-O, Rate of Convergence

1.1 Review of Calculus

Limits of Functions

A function f defined on a set X of real number has the limit L at
x0, written

lim
x−→x0

f(x) = L,

if
∀ε > 0, ∃δ > 0 : |x− x0| < δ =⇒ |f(x)− L| < ε.

Continuity

Let f be defined on X and x0 ∈ X. Then f is continuous at x0 if

lim
x−→x0

f(x) = f(x0).

If f is continuous ∀x ∈ X, then f is continuous on X. We denote
the set of all functions continuous on X as C(X). The set of all
continuous functions on an interval [a, b] is C[a, b].

4

Limits of Sequences

Let {xn}∞n=1 be an infinite sequence in R. The sequence has limit x
or converges to x if

∀ε > 0, ∃N(ε) ∈ Z+ : n > N =⇒ |xn − x| < ε.

If f is defined on X, x0 ∈ X, then f is continuous at x0 iff limn−→∞ f(xn) =
f(x0) for {xn}∞n=1 converging to x0.

1.1.1 Differentiability

Our numerical approximation methods rely on some assumptions of our
functions. One such assumption is smoothness, which is characterized by
the derivative.

Differentiability

A function f on an open interval containing x0 is differentiable at
x0 if

f ′(x0) = lim
x−→x0

f(x)− f(x0)

x− x0

exists. f ′(x0) is the derivative of f at x0; a function that has a
derivative at each x ∈ X is differentiable on X. The set of n-times
differentiable functions is Cn(X).

Rolle’s Theorem

Suppose f ∈ C[a, b] and f is differentiable on (a, b). If f(a) = f(b),
∃c ∈ (a, b) : f ′(c) = 0.

Mean Value Theorem

If f ∈ C[a, b] and f is differentiable on (a, b), then

∃c ∈ (a, b) : f ′(c) =
f(b)− f(a)

b− a
.

5

Extreme Value Theorem

If f ∈ C[a, b], then ∃c1, c2 ∈ [a, b] : f(c1) ≤ f(x) ≤ f(c2)∀x ∈ [a, b].
If f is differentiable on (a, b), then c1 and c2 appear either at the
endpoints of [a, b] or where f ′ = 0.

Generalized Rolle’s Theorem

Suppose f ∈ Cn[a, b]. If f(x) = 0 at the n+ 1 points a ≤ x0 < x1 <
... < xn ≤ b, then ∃c ∈ (x0, xn) : f (n)(c) = 0.

Intermediate Value Theorem

If f ∈ C[a, b] and K is between f(a) and f(b), then ∃c ∈ (a, b) :
f(c) = K.

1.1.2 Integration

The other key calculus concept of this course is the Riemann integral.

Riemann Integration The Riemann integral of f on [a, b] is the
following limit, provided it exists:∫ b

a
f(x)dx = lim

max ∆xi−→0

n∑
i=1

f(zi)∆xi,

where x0, ..., xn satisfy a = x0 ≤ x1 ≤ ... ≤ xn = b, ∆xi = xi − xi−1,
and zi is arbitrarily chosen in [xi−1, xi].

Weighted Mean Value Theorem for Integrals

Suppose f ∈ C[a, b], the Riemann integral of g exists on [a, b], and
g(x) maintains sign on [a, b]. Then

∃c ∈ (a, b) :

∫ b

a
f(x)g(x)dx = f(c)

∫ b

a
g(x)dx.

6

1.1.3 Taylor Polynomials and Taylor Series

Computers have a finite amount of granularity with which they can approx-
imate functions. To this end, we use our ability to create a polynomial that
can approximate whatever function we want.

Taylor’s Theorem

Suppose f ∈ Cn[a, b], that f (n+1) exists on [a, b], and x0 ∈ [a, b].
∀x ∈ [a, b], ∃ξ(x) ∈ [x0, x] with

f(x) = Pn(x) +Rn(x),

where

Pn(x) =
n∑
k=0

f (k)(x0)

k!
(x− x0)k, Rn(x) =

fn+1(ξ(x))

(n+ 1)!
(x− x0)n+1.

Pn is the nth Taylor Polynomial of f about x0, and Rn is the
remainder or truncation error. The Taylor series of f about
x0 is Pn, n −→ ∞. If x0 = 0, we call this a Maclaurin polyno-
mial/Maclaurin series.

1.2 Round-off Errors and Computer Arithmetic

Computers and other machines can’t possibly represent every possible num-
ber, since this would require an infinite amount of resources. Instead, we
make an approximation and interpret it with respect to the error in the
calculation, the round-off error.

1.2.1 Binary Machine Numbers

The IEEE Floating Point Arithmetic Standard 754-2008 determines
the standards for binary floating point numbers, formats for data inter-
change, rounding algorithms, and exception handling. A 64-bit represen-
tation consists of a single signed bit, an 11-bit exponent known as the
characteristic, and a 52-bit binary fraction known as the mantissa, de-
noted s, c, f respectively. We use this representation to compute the floating
point value as

(−1)s2c−1023(1 + f).

7

Numbers with magnitude less than 2−1022 are set to 0 as a result of under-
flow and numbers greater than 21023(2 − 2−52 will halt computation and
result in overflow.

1.2.2 Decimal Machine Numbers

We typically represent decimal numbers in the form

±0.d1d2...dk × 10n, 1 ≤ d1 ≤ 9, 0 ≤ di ≤ 9.

Any (positive) real number in the range of the machine can be written as

y = 0.d1...dkdk+1...× 10n

We can “cut” the number at k digits (fl(y)) through one of two methods
– we chop (remove all extra digits) after the kth digit, or we round (add
5× 10n−(k+1) then chop).

1.2.3 Finite-Digit Arithmetic

In computer arithmetic, we are faced with errors as a result of compound-
ing these floating-point approximations. We use the symbols ⊕,	,⊗,� to
represent machine operations. We must use floating point approximation at
every step of the computation, i.e.

x⊕ y = fl(fl(x) + fl(y)) x⊗ y = fl(fl(x)× fl(y))

x	 y = fl(fl(x)− fl(y)) x� y = fl(fl(x)/fl(y))

Absolute and Relative Error

Let p∗ approximate p. Then the absolute error is

|p− p∗|,

and the relative error is

|p− p∗|
|p|

p 6= 0.

Note that rounding at every step can quickly lead to large losses in accuracy.
For this reason, it is important to reduce the number of computations as
much as possible.

8

1.3 Algorithms and Convergence

An algorithm is a procedure that describes a finite sequence of steps to e
performed in a specified order. If you’ve taken any CS classes, you’re already
familiar with big-O notation and how it’s applied to algorithms.

Rates of Convergence

Suppose {βn}∞n=1 converges to 0, and {αn}∞n=1 converges to α. If there
exists a positive K such that

|αn − α| ≤ K|βn|,

then we say that the sequence (αn) converges to α with rate of
convergence O(βn). βn is often in the form 1

np .

2 Solutions of Equations in One Variable

Numerical methods can often approximate single-variable equations to a
high degree of accuracy.

Key Topics

• 2.1: Root-finding Problems, Zeros, Bisection Method

• 2.2: Fixed Point, Functional Iteration

• 2.3: Newton-Raphson Method, Secant Method, Regula Falsi

• 2.4: Order of Convergence, Linear and Quadratic Convergence,
Multiplicity

• 2.5: Aitken’s ∆2 Method, Forward Difference, Steffensen’s
Method

2.1 The Bisection Method

One of the most basic numerical approximation problems is the root-finding
problem, where we find values of x for which f(x) = 0, the roots or zeros
of f .

9

We begin with the bisection method. By the Intermediate Value Theo-
rem, we know that there must be a root in the interval [a, b] if f(a)f(b) < 0.
The algorithm itself is simple:

PROCEDURE BISECTION(a, b, tol, N):
2. ASSERT f(a)f(b) < 0, SET i = 1
3. WHILE i ≤ N DO 4-7

4. p0 = 1
2(a+ b)

5. IF f(p0) <tol THEN p = pi DONE.
6. IF sgn(f(p0)) =sgn(f(a)) a = p0, b = b

IF sgn(f(p0)) =sgn(f(b)) a = a, b = p0

7. SET i = i+ 1
8. UNSUCCESSFUL IN N ITERATIONS, DONE.

Bisection Theorem

Suppose f ∈ C[a, b], f(a)f(b) < 0. Then the Bisection method gen-
erates a sequence (pn) with

|pn − p| ≤
b− a

2n
.

2.2 Fixed-Point Iteration

A fixed point for a function g is a point p such that g(p) = p (we can
think of this as saying that g intersects the line y = x at p). Note the
similarity to the above root-finding problem; if g(x) has a fixed point at p
then f(x) = x− g(x) must have a zero at p. Likewise, if f(x) = 0 at p, then
g(x) = x+ f(x) has a fixed point at p.

If g ∈ C[a, b] and g(x) ∈ [a, b] for all x ∈ [a, b] then g has at least one
fixed point in [a, b]. Additionally, if g′(x) exists on (a, b) and

∃k < 1 : |g′(x)| ≤ k, ∀x ∈ (a, b),

then there is exactly one fixed point in [a, b]. These conditions are sufficient
but not necessary; it is possible for a unique fixed point to exist on an interval
without satisfying the above condition. Observe this with g(x) = 3−x.

10

2.2.1 Fixed-Point Iteration

As with root-finding, we have an iterative approach to approximating a
fixed point. We choose an initial approximation p0 and generate a sequence
{pn}∞n=1 by letting pn+1 = g(pn). If this sequences converges to p and g
is continuous, then p = g(p). This technique is known as fixed-point or
functional iteration.

PROCEDURE FIXEDPOINT(p0, tol, N):
1. SET i = 1
2. WHILE i ≤ N DO 3-6

3. SET p = g(p0)
4. IF |p− p0| <tol THEN p = p0 DONE.
5. SET i = i+ 1
6. SET p0 = p

7. UNSUCCESSFUL IN N ITERATIONS, DONE.

Fixed-Point Theorem

Let g ∈ C[a, b] with g(x) ∈ [a, b] ∀ x ∈ [a, b]. Suppose g′ is defined on
(a, b) and

∃k ∈ R : |g′(x)| ≤ k ∀x ∈ (a, b).

Then for any point p0 ∈ [a, b], the sequence pn+1 = g(pn) converges
to the fixed point p ∈ [a, b].

Corollary: If g satisfies the above hypotheses, then the bounds for
the error involved in approximating p with pn are

|pn − p| ≤ kn max{p0 − a, b− p0},

|pn − p| ≤
kn

1− k
|p1 − p0| ∀n ≥ 1.

2.3 The Newton-Raphson Method and Extensions

The Newton-Raphson method (or Newton’s method) is one of the
most well-known numerical methods for root-finding problems.

11

2.3.1 Newton’s Method

Suppose f ∈ C2[a, b]. Let p0 ∈ [a, b] be an approximation to p such that
f ′(p0) 6= 0 and |p − p0| is small. Then the first order Taylor polynomial
about p0 at p is

f(p) = f(p0) + (p− p0)f ′(p0) +
1

2
(p− p0)2f ′′(ξ(p)).

We can set f(p) = 0, and additionally since |p− p0| is small we can say that
(p− p0)2 goes to 0. Therefore, we have our approximation as

0 ≈ f(p0) + (p− p0)f ′(p0) =⇒ p ≈ p− f(p0)

f ′(p0)
≡ p1.

Newton’s method starts with an approximation p0 and generates the se-
quence {pn}∞n=0 as

pn = pn−1 −
f(p0)

f ′(p0)
, n ≥ 1.

The procedure is described below:

PROCEDURE NEWTONS(p0, tol, N):
1. SET i = 1
2. WHILE i ≤ N DO 3-6:

3. SET p = p0 − f(p0)
f ′(p0)

4. IF |p− p0| <tol THEN p = p0 DONE.

5. SET i = i+ 1
6. SET p0 = p

7. UNSUCCESSFUL IN N ITERATIONS, DONE.

Newton’s Method Theorem

Let f ∈ C2[a, b]. If p ∈ (a, b) such that f(p) = 0 and f ′(p) 6= 0 then
∃ δ > 0 such that Newton’s method generates {pn}∞n=1 converging to
p for an initial approximation p0 ∈ [p− δ, p+ δ].

2.3.2 The Secant Method

One of the major flaws with Newton’s method is that we need to know f ′ at
each approximation. Oftentimes, f ′(x) is significantly more complex than

12

f(x). To avoid this issue, we use the definition of derivative:

f ′(pn−1) = lim
x−→pn−1

f(x)− f(pn−1)

x− pn−1
.

We approximate pn−2 as being close to pn−1. Then

f ′(pn−1) ≈ f(pn−1)− f(pn−2)

pn−1 − pn−2
=
f(pn−1)− f(pn−2)

pn−1 − pn−2

We use this approximation in Newton’s formula, yielding the Secant method
with sequence

pn = pn−1 −
f(pn−1)(pn−1 − pn−2)

f(pn−1)− f(pn−2)
.

PROCEDURE SECANT(p0, p1, tol, N):
1. SET i = 2, q0 = f(p0), q1 = f(p1).
2. WHILE i ≤ N DO 3-6.

3. SET p = p1 − q1(p1 − p0)/(q1 − q0)
4. IF |p− p1| <tol THEN p = p1 DONE.
5. SET i = i+ 1
6. SET p0 = p1, q0 = q1, p1 = p, q1 = f(p)

7. UNSUCCESSFUL IN N ITERATIONS, DONE.

2.3.3 Regula Falsi

The bisection method provides root bracketing, meaning that we can defini-
tively narrow our error bound at each iteration (as we ensure that as we alter
a and b the root is guaranteed to be contained between them). Newton’s
method and the Secant method do not guarantee root bracketing.

Regula Falsi, the method of False Position, generates approximations
as with the Secant method but additionally ensures the root is bracketed
between iterations. We use the signs of f(pi−1) and f(pi−2) to determine
how to correctly bracket pi, and assign indices accordingly.

PROCEDURE FALSEPOSITION(p0, p1, tol, N):
1. SET i = 2, q0 = f(p0), q1 = f(p1)
2. WHILE i ≤ N DO 3-7:

3. SET p = p1 − q1(p1 − p0)/(q1 − q0)

13

4. IF |p− p1| <tol THEN p = p1 DONE.

5. SET i = i+ 1, q = f(p)
6. IF (q)(q1) < 0 THEN SET p0 = p1, q0 = q1

7. SET p1 = p, q1 = q
8. UNSUCCESSFUL IN N ITERATIONS, DONE.

2.4 Error Analysis for Iterative Methods

Order of Convergence

Suppose {pn}∞n=0 is a sequence that converges to p with pn 6= p. If
λ, α > 0 exist with

lim
n−→∞

|pn+1 − p|
|pn − p|α

= λ

Then {pn}∞n=0 converges to p of order α, with asymptotic
error constant λ.

If α = 1 then the sequence is linearly convergent. If
α = 2 then the sequence is quadratically convergent.

Series that are quadratically convergent converge significantly more quickly
than linearly convergent sequences.

Furthermore, we know that if we generate the sequence arbitrarily (as with
the fixed point theorem) our convergence will be at most linear. Let g ∈
C[a, b] be such that g(x) ∈ [a, b]. Suppose g′ is continuous on (a, b) and
∃ k > 1 where

|g′(x)| ≤ k.

If g′(p) 6= 0 then for any p0 6= p in [a, b] the sequence pn = g(pn−1) converges
only linearly to the fixed point.

Instead, we have a stronger condition that will guarantee a quadratically
convergent sequence. Let p be a solution of x = g(x). Suppose g′(p) = 0
and g′′ is continuous with |g′′(x)| < M on an open interval I containing
p. Then there exists δ > 0 such that for p0 ∈ [p − δ, p + δ] the sequence
defined by pn = g(pn−1) when n ≥ 1, converges at least quadratically to p.

14

Moreover, for sufficiently large values of n,

|pn+1 − p| <
M

2
|pn − p|2.

Multiple Roots

A solution p of f(x) = 0 is a zero of multiplicity m of f if for x 6= p
we can write f(x) = (x−p)mq(x), where limx−→p q(x) 6= 0. A simple
zero of a function is one that has multiplicity 1.

Regardless of the multiplicity of the zero of f , we can use a modified ver-
sion of Newton’s method that is guaranteed to be quadratically convergent.
To this end, we define

g(x) = x− f(x)f ′(x)

[f ′(x)]2 − f(x)f ′′(x)
.

Functional iteration on g will quadratically converge; however, we get signif-
icant rounding problems due to how close the elements of the denominator
are to zero.

2.5 Accelerating Convergence

2.5.1 Aitken’s ∆2 Method

In 1926, mathematician Alexander Aitken determined a technique for con-
structing a sequence {p̂n}∞n=0 that converges more rapidly to p than the
original sequence {pn}∞n=0. The sequence in question is dtermined to be

p̂n = pn −
(pn+1 − pn)2

pn+2 − 2pn+1 + pn
.

The ∆ in this notation arises from the following:

15

Forward Difference

For a given sequence {pn}∞n=0, the forward difference ∆pn is defined
by

∆pn = pn+1 − pn.

Powers of ∆ are defined recursively by

∆kpn = ∆(∆k−1pn),

implying that ∆2pn = (pn+2−pn+1)−(pn+1−pn). Then we can write
Aitken’s method as

p̂n = pn −
(∆pn)2

∆2pn
.

2.5.2 Steffensen’s Method

Given a linearly convergent sequence obtained from fixed-point iteration,
we can accelerate it to quadratic convergence using a modified version of
Aitken’s ∆2 method. In particular, we assume that p̂n is a better approxi-
mation to p than p2.

p
(0)
0 , p

(0)
1 = g(p

(0)
0), p

(0)
2 = g(p

(0)
1), p

(1)
0 = {∆2}(p(0)

0), p
(1)
1 = g(p

(1)
0), ...

PROCEDURE STEFFENSENS(p0, tol, N):
1. SET i = 1
2. WHILE i ≤ N DO 3-6:

3. SET p1 = g(p0), p2 = g(p1), p = p0 − (p1−p0)2

p2−2p1+p0
4. IF |p− p0| <tol THEN OUTPUT p, DONE.
5. SET i = i+ 1
6. SET p0 = p

7. UNSUCCESSFUL IN N ITERATIONS, DONE.

If ∆2pn = 0, then we use p
(n−1)
2 as our best approximation and proceed.

3 Interpolation and Polynomial Approximation

Measured data only gives us a snapshot of the reality of the world. We
often want to be able to interpret data and get more useful information
from it – “what does the trend look like outside the measured timeframe?”

16

“What would the measurement have been if we had recorded between these
two time intervals?” Here, we explore methods of of interpolation to find a
well-defined function that allows to answer these questions.

Key Topics

• 3.1: Algebraic Polynomials, Stone-Weierstrass Theorem, La-
grange Interpolating Polynomials

• 3.2 Divided Differences, Newton’s Forward and Backward Dif-
ferences

• 3.3 Osculating Polynomials, Hermite Polynomials

• 3.4 Piecewise-polynomial Approximations, Cubic Spline Inter-
polant, Natural and Clamped Cubic Splines

3.1 Interpolation and the Lagrange Polynomial

One particularly important class of functions is the class of algebraic poly-
nomials mapping R to R. These functions are particularly useful due to
the following property (from real analysis):

Stone-Weierstrass Theorem

Suppose f is well-defined and continuous on [a, b]. For each ε > 0,
∃ P (x) :

|f(x)− P (x)| < ε.

Note: don’t confuse this for the similarly named Bolzano-
Weierstrass Theorem, which states that every bounded sequence
has a convergent subsequence.

Essentially, this means that for any function, we can find a polynomial ap-
proximating it to as granular of a degree as we want.

Note that we’ve already seen approximating polynomials in the form of
Taylor polynomials. However, Taylor polynomials are centered around a
certain value x0, and begin to deviate significantly as we move further and
further from x0. For this reason, we don’t typically use Taylor polynomials
for approximation, only for error calculation purposes.

17

3.1.1 Lagrange Interpolating Polynomials

One of the simplest methods of interpolation was made popular by Joseph
Louis Lagrange, the nth Lagrange interpolating polynomials. Inter-
polation means agreeing with; for a set of n points, we guarantee that our
polynomial must pass through each of the points.

Lagrange Polynomial

The Lagrange polynomial given n values x0, ..., xn and function values
f(x0), ..., f(xn) is a polynomial P (x) such that f(xk) = P (xk), k ∈
[0, n]. This polynomial is

P (x) =

n∑
k=0

f(xk)Ln,k =

n∑
k=0

f(xk)

n∏
i=0,i 6=k

(x− xi)
(xk − xi)

.

As per usual, we can calculate a remainder term:

f(x) = P (x) +
f (n+1)(ξ(x))

(n+ 1)!
(x− x0)(x− x1)...(x− xn).

As usual, ξ(x) is unknown and in (a, b).

3.2 Divided Differences

The nth Lagrage polynomial agreeing with f at n+ 1 points is unique, but
we can represent it in different ways. Here, we seek to write Pn(x) in the
form

Pn(x) = a0 + a1(x−x0) + a2(x−x0)(x−x1) + . . .+ an(x−x0)...(x−xn−1).

We are now tasked with finding these constants a0, ..., an. To do this, simply
note that if we set x = x0 then Pn(x0) = f(x0) = a0. Likewise, for x = x1

we have Pn(x1) = f(x1) = f(x0) + a1(x1 − x0); this means that

a1 =
f(x1)− f(x0)

x1 − x0
.

More generally, the zeroth divided difference f [xi] = f(xi). The first
divided difference

f [xi, xi+1] =
f [xi+1 − xi+2]− f [xi − xi+1]

xi+2 − xi
.

18

Doing this recursively gives us the kth divided difference:

f [xi, xi+1, ..., xi+k−1, xi+k] =
f [xi+k, ..., xi+k]− f [xi, ..., xi+k−1]

xi+k − xi

To illustrate how this works, we can use the following divided differences
table:

x f(x) 1st divided differences 2nd divided differences

x0 f [x0]

f [x0, x1] = f [x1]−f [x0]
x1−x0

x1 f [x1] f [x0, x1, x2] = f [x1,x2]−f [x0,x1]
x2−x0

f [x1, x2] = f [x2]−f [x1]
x2−x1

x2 f [x2]

Note that we can write this in terms of our forward difference ∆:

f [x0, ..., xk] =
1

k!hk
∆kf(x0).

The coefficients of our interpolating polynomial are along the diagonal of
the table. More precisely, the coefficients are a0 = f [x0], a1 = f [x0, x1],
a2 = f [x0, x1, x2], ... and so on. This process of determining these values is
known as Newton’s divided difference formula.
We simplify this slightly with the following theorem: suppose that f ∈
Cn[a, b] and x0, ..., xn are distinct in [a, b]. Then there exists a number ξ in
(a, b) with

f [x0, ..., xn]
f (n)(ε)

n!
.

If we arrange our xi’s consecutively with equal spacing, we can simplify our
notation. We use h = xi+1 − xi for each i, and let x = x0 + sh. Then
x− xi = sh− ih = (s− i)h. In particular, we can write

Pn(x) = Pn(x0 + sh) + f [x+ 0] +

n∑
k=1

(
s

k

)
k!hkf [x0, x1, ..., xk].

Newton’s method here makes use of the forward difference ∆ that we
mentioned when discussing Aitken’s method.

19

Newton’s Forward Difference Method

For a list of consecutive xi’s evenly spaced with spacing h, and with
x = x0 + sh, the interpolating polynomial is

Pn(x) = f(x0) +
n∑
k=1

(
s

k

)
∆kf(x0).

3.2.1 Backward Differences

The forward difference method is most useful when the data point x we’re
trying to approximate is close to the top of the table, since the close it is
to x0 the more we use x0 to determine our polynomial. However, when x is
closer to xn, we might want to use a polynomial that is more dependent on
xn than x0. For this, we need the following definition.

Backward Difference

The backward difference ∇pn is

∇pn = pn − pn−1.

Higher powers are defined recursively by ∇kpn = ∇(∇k−1pn)

Using the same logic as the forward difference formula, we can define our
divided differences in terms of this backward difference.

f [xn, ..., xn−k] =
1

k!hk
∇kf(xn).

This gives us the following result:

Newton’s Backward Difference Method

For a list of consecutive decreasing xi’s evenly spaced with spacing
h and with x = xn + sh (note this means s < 0), the interpolating
polynomial is given by

Pn(x) = f [xn] +
n∑
k=1

(−1)k
(
−s
k

)
∇kf(xn).

20

The divided differences are seen here:

x f(x) 1st divided differences 2nd divided differences

x0 f [x0]

f [x0, x1] = f [x1]−f [x0]
x1−x0

x1 f [x1] f [x0, x1, x2] = f [x1,x2]−f [x0,x1]
x2−x0

f [x1, x2] = f [x2]−f [x1]
x2−x1

x2 f [x2]

Here, the overlines f [x] are the backward differences and the underlines f [x]
are the forward differences. Note the 2nd divided differences coincide for
both.

3.3 Hermite Interpolation

Lagrange and Taylor polynomials can be generalized by osculating poly-
nomials, which attempt to not only match values but also derivatives of
the original function.

Osculating Polynomial

Let x0, ..., xn be n + 1 distinct numbers in [a, b], and for each i let
mi ∈ Z+. Suppose f ∈ Cm[a, b] where m = maximi. The osculating
polynomial approximating f is the polynomial P (x) of least degree
such that

dkP (xi)

dxk
=
dkf(xi)

dxk
, ∀i ∈ [0, n], k ∈ [0,mi].

Hermite polynomials are osculating polynomials where mi = 1. For a func-
tion f , these polynomials agree with f at x0, ..., xn, and their first derivatives
agree with f ′ at x0, ..., xn.

21

Hermite Polynomials

If f ∈ C1[a, b], and x0, ..., xn ∈ [a, b] are distinct, the unique polyno-
mial of least degree agreeing with f and f ′ at x0, ..., xn is the Hermite
polynomial of degree at most 2n+ 1 given by

H2n+1(x) =

n∑
j=0

f(xj)Hn,j(x) +

n∑
j=0

f ′(xj)Ĥn,j(x),

where for Ln,j(x) denoting the jth Lagrange polynomial of degree n,

Hn,j(x) = [1−2(x−xj)L′n,j(xj)]L2
n,j(x), Ĥn,j(x) = (x−xj)L2

n,j(x).

3.3.1 Hermite Polynomials from Divided Differences

The above computation is extremely complex even when n is small. From
our table of divided differences, we can see that the first divided difference
bears a strong resemblance to the first derivative.

For this, we construct a new divided difference table with the following
condition:

z2i = z2i+1 = xi.

Note that now f [z2i, z2i+1] is undefined; we use f ′(xi) as a substitute here.
We can then just use Newton’s Forward Difference method as usual (use the
top row of the table) to get

H2n+1(x) = f [z0] +
2n+1∑
k=1

f [z0, ..., zk](x− z0)...(x− zk−1).

3.4 Cubic Spline Interpolation

High degree polynomials have highly irregular oscillations. Instead of trying
to approximate using a single polynomial, it might be more appropriate to
divide the interval into subintervals and construct a different approximation
function for each subinterval; this is piecewise-polynomial approxima-
tion. The simplest piecewise polynomial approximation – a linear approxi-
mation – simply connects (xi, f(xi)) with (xi+1, f(xi+1)).

22

The most common piecewise-polynomial approximation uses cubic polyno-
mials, and is called cubic spline interpolation. A cubic function has
enough terms to where we can ensure continuous first and second deriva-
tives on the interval; however, we do not guarantee that the interpolant
matches derivatives with the function at any point.

A cubic spline interpolant S for a function f on [a, b] with distinct nodes
a = x0, ..., xn = b satisfies the following conditions:

1. S(x) is a cubic polynomial, denoted Sj(x), on the subinterval [xj , xj+1]

2. Sj(xj) = f(xj), Sj(xj+1) = f(xj)

3. Sj+1(xj+1) = Sj(xj+1)

4. S′j+1(xj+1) = S′j(xj+1)

5. S′′j+1(xj+1) = S′′j (xj+1)

6. Either S′′(xn) = S′′(x0) = 0 (natural spline or free spline) or S′(xn) =
f ′(xn), S′(x0) = f ′(x0) (clamped spline)

4 Numerical Differentiation and Integration

The previous section discusses how we may approximate complicated func-
tions with polynomials. Differentiation and integration of complicated func-
tions can be troublesome, tedious, and computationally intensive. Deriva-
tives and integrals of polynomials are simple – here, we use polynomial ap-
proximations of functions to facilitate approximating their derivatives and
integrals.

23

Key Topics

• 4.1: Derivative, (n+ 1)-point Formulas, Three-Point and Five-
Point Formulas

• 4.2 Richardson’s Extrapolation

• 4.3 Numerical Quadrature, Trapezoidal Rule, Simpson’s Rule,
Precision, Closed and Open Newton-Cotes Formulas,

• 4.4 Composite Trapezoidal Rule, Composite Simpson’s Rule

• 4.5 Adaptive Quadratrue, Tolerance

• 4.6 Gaussian Quadrature, Legendre Polynomials

• 4.7 Composite Trapezoidal Rule for Double Integrals, Compos-
ite Simpson’s Rule for Double Integrals, Non-Rectangular Re-
gions

• 4.8 Improper Integrals, Singularity, Left and Right Endpoint
Singularity, Infinite Singularity

4.1 Numerical Differentiation

Generally, the derivative of a function is

f ′(x0) = lim
h−→0

f(x0 + h)− f(x0)

h
.

Computing this limit is difficult, however, due to issues with precision. We
generally estimate it as follows, with ξ ∈ [x0, x0 + h]:

f ′(x0) =
f(x0 + h)− f(x0)

h
− h

2
f ′′(ξ).

When h > 0 this is the forward-difference formula; otherwise it is the
backward-difference formula. The error is bounded by M |h|

2 , where M
bounds f ′′(x) on [x0, x0 + h].

The (n+ 1)-point formula for approximating f ′(xj) is

f ′(xj) =

n∑
k=0

f(xk)L
′
k(xj) +

f (n+1)(ξ(xj))

(n+ 1)!

n∏
k=0,k 6=j

(xj − xk)

24

In general, the more points we use for our evaluation the better our approxi-
mation is. However, we generally don’t want to use too many points because
of the number of computations required.

4.1.1 Three-Point Formulas

Assume we have 3 evenly spaced nodes,

x0, x1 = x0 + h, x2 = x0 + 2h.

Then, we have

L′0(x) =
2x− x1 − x2

(x0 − x1)(x0 − x2)
, L′1(x) =

2x− x0 − x2

(x1 − x0)(x1 − x2)
, L′2(x) =

2x− x0 − x1

(x2 − x0)(x2 − x1)
.

Then our (n+ 1)-point formula gives us:

f ′(x0) =
1

h

[
−3

2
f(x0) + 2f(x1)− 1

2
f(x2)

]
+
h2

3
f (3)(ξ0),

f ′(x1) =
1

h

[
−1

2
f(x0) +

1

2
f(x2)

]
− h2

6
f (3)(ξ1),

f ′(x2) =
1

h

[
1

2
f(x0)− 2f(x1) +

3

2
f(x2)

]
+
h2

3
f (3)(ξ2).

For notational consistency, we typically write these in terms of x0, where we
substitute x0, x0 + h, x0 + 2h with x0 − h, x0, x0 + h and x0 − 2h, x0 − h, x0

depending on context. From here, we get the following:

Three-Point Formulas

Three-Point Endpoint Formula:

f ′(x0) =
1

2h
[−3f(x0) + 4f(x0 + h)− f(x0 + 2h)] +

h2

3
f (3)(ξ0)

Three-Point Midpoint Formula:

f ′(x0) =
1

2h
[f(x0 + h)− f(x0 − h)]− h2

6
f (3)(ξ1)

We use the same concept to define the five-point formulas. Note that for
both of these sets of formulas, we use h for the left endpoint and −h for the
right endpoint.

25

Five-Point Formulas

Five-Point Endpoint Formula:

f ′(x0) =
1

12h
[−25f(x0) + 48f(x0 + h)− 36f(x0 + 2h)

+ 16f(x0 + 3h)− 3f(x0 + 4h)] +
h4

5
f (5)(ξ)

Five-Point Midpoint Formula:

f ′(x0) =
1

12h
[f(x0−2h)−8f(x0−h)+8f(x0+h)−f(x0+2h)]+

h4

30
f (5)(ξ)

4.2 Richardson’s Extrapolation

Richardson’s Extrapolation generates high-accuracy results using low-order
functions. Extrapolation can be used when we can define the error in terms
of a parameter, usually the step size h.

For an approximation N1(h) approximating M , we can write the error as
M − N1(h) =

∑
iKih

i. Typically we use the lowest order term as a good
approximation, so we can roughly say that M −N1(h) ≈ K1h. We want a
way to eliminate all these low-order error terms.

We do this by combining the N1(h) formulas to produce N2(h) formulas
with an error on O(h2) and so on. In particular, if we look at the following:

M = N1(h) +K1h+K2h
2 +K3h

3 + ... (1)

M = N1

(
h

2

)
+K1

(
h

2

)
+K2

(
h

2

)2

+K3

(
h

2

)3

+ ... (2)

we can linearly combine 2(2)− (1) to get

M = 2N1

(
h

2

)
−N1(h) +K2

(
h2

2

)
−K2h

2 + ...

We let

N2 = 2N1

(
h

2

)
−N1(h)

In many cases, the truncation errors appear only with respect to even powers
of h, which lets us get higher order errors much more quickly. In this case,

26

we can form a general structure:

Nj(h) = Nj−1

(
h

2

)
+
Nj−1(h/2)−Nj−1(h)

4j−1 − 1

4.3 Elements of Numerical Integration

In elementary calculus, we can integrate relatively easily by using the an-
tiderivative. However, many times the derivative either does not exist or is
not easy to obtain. The method, then, of calculating

∫ b
a f(x)dx is known as

numerical quadrature, using
∑n

i=0 aif(xi) to approximate
∫ b
a f(x)dx.

Here, we discuss quadrature methods based in our formulas for polyno-
mial interpolation discussed earlier. As an example, we can integrate the
Lagrange interpolating polynomial:∫ b

a
f(x)dx =

∫ b

a

n∑
i=0

f(x)Li(x)dx+

∫ b

a

n∏
i=0

(x− xi)
f (n+1)(ξ(x))

(n+ 1)!
dx

This simply becomes∫ b

a
f(x)dx =

n∑
i=0

f(xi)

∫ b

a
Li(x)dx+

1

(n+ 1)!

∫ b

a

n∏
i=0

(x− xi)f (n+1)(ξ(x))dx.

4.3.1 The Trapezoidal Rule

We once again take advantaged of having evenly spaced nodes. The trape-
zoidal rule is common in elementary calculus classes. Here, we see the intu-
ition behind it by integrating a degree 1 Lagrange interpolator

P1(x) =
(x− x1)

(x1 − x0)
f(x0) +

(x− x0)

(x1 − x0)
f(x1).

Simplifying leads to the following:

27

Trapezoidal Rule

For x0 = a, x1 = b, h = b− a, x0 < x1, the trapezoidal rule approxi-
mates the integral as∫ b

a
f(x)dx =

h

2
[f(x0) + f(x1)]− h3

12
f ′′(ξ).

The error term goes to 0 when the second derivative of f(x) is 0, or
when f(x) has degree at most 1.

4.3.2 Simpson’s Rule

When we have access to the 2nd order Lagrange interpolator, we can ap-
proximate the integral with truncation error on O(h5), which is much better
than the Trapezoidal rule!

Simpson’s Rule

For three equally spaced points x0, x1, x2 we approximate the integral
of f(x) as∫ x2

x0

f(x)dx =
h

3
[f(x0) + 4f(x1) + f(x2)]− h5

90
f (4)(ξ).

For quadrature methods, we determine error by finding the polynomial class
the formula belongs in. More precisely, the degree of accuracy or pre-
cision of a quadrature formula is the largest positive integer n such that
the formula is exact for xk, 0 ≤ k ≤ n. For example, the Trapezoidal rule
is exact for polynomials up to degree 1, and Simpson’s rule is exact for
polynomials up to degree 3.

4.3.3 Newton-Cotes Formulas

The (n+1)-point closed Newton-Cotes formula uses n+1 nodes equally
spaced where x0 = a, xn = b, and h = (b−a)/n. It generalizes notions we’ve
visited already with the Trapezoidal rule and Simpson’s rule.

28

Closed Newton-Cotes Formula∫ b

a
f(x)dx ≈

n∑
i=0

aif(xi),

ai =

∫ xn

x0

Li(x)dx =

∫ xn

x0

n∏
j=0,j 6=i

(x− xj)
(xi − xj)

dx.

The Trapezoidal rule is the same as the 1-point Newton-Cote’s formula, and
Simpson’s rule is the 2-point Newton-Cote’s formula.

The open Newton-Cotes formulas do not include [a, b] as nodes. We
then let x0 = a + h and xn = a − h, so our bounds of integration are x−1

and xn−1.

Open Newton-Cotes Formula∫ b

a
f(x)dx =

∫ xn−1

x−1

f(x)dx ≈
n∑
i=0

aif(xi),

ai =

∫ b

a
Li(x)dx.

4.4 Composite Numerical Integration

Recall the issue with Hermite polynomials from the previous section; func-
tions that oscillate heavily make it difficult to have evenly-spaced intervals.
Additionally, Newton-Cotes is ultra computationally intensive over large in-
tegration intervals. Here, we discuss composite variants of the methods from
above.

Composite Trapezoidal Rule

Let f ∈ C2[a, b], h = (b− a)/n, and xj = a+ jh for each j = 0, ..., n.
There exists µ ∈ (a, b) for which the Composite Trapezoidal rule
for n subintervals can be written with its error term as∫ b

a
f(x)dx =

h

2

[
f(a) + 2

n−1∑
i=1

f(xj) + f(b)

]
− b− a

12
h2f ′′(µ).

29

Composite Simpson’s Rule

Let f ∈ C4[a, b], n be even, h = (b− a)/n, and xj = a+ jh, for each
j = 0, ..., n. There exists µ ∈ (a, b) for which Composite Simpson’s
rule for n subintervals can be written with its error term as∫ b

a
f(x)dx =

h

3

f(a) + 2

(n/2)−1∑
j=1

f(x2j) + 4

n/2∑
j=1

f(x2j−1) + f(b)


− b− a

180
h4f (4)(µ).

4.5 Adaptive Quadrature Methods

Not all functions are alike. Some vary widely on certain subsets of their do-
main and vary minimally on other subsets. For this reason, it’s not always
possible to determine equally spaced nodes for evaluating these functions.
We want a way to vary step size in accordance with how much the function
varies. These methods are known as adaptive quadrature.

Suppose we want to approximate
∫ b
a f(x)dx to a desired tolerance ε > 0. Us-

ing Simpson’s rule, we calculate (with h = (b− a)/2)
∫ b
a f(x)dx = S(a, b) +

h5

90f
(4)(ξ). Here,

S(a, b) =
h

3
[f(a) + 4f(a+ h) + f(b)].

From here, we calculate an approximation that doesn’t use f (4)(ξ); we use
composite Simpson’s with n = 4 and h = (b− a)/4 to get∫ b

a
f(x)dx = S

(
a,
a+ b

2

)
+ S

(
a+ b

2
, b

)
− 1

16

(
h5

90

)
f (4)(ξ̃).

We assume that f (4)((̃ξ)) ≈ f (4)(ξ), and setting our two Simpson’s estimates
equal to each other, we see that

h5

90
f (4)(ξ) ≈ 16

15

[
S(a, b)− S

(
a,
a+ b

2

)
− S

(
a+ b

2

)]
.

This tells us that our Composite estimate is about 15 times better than our
normal estimate, so S

(
a, a+b

2

)
− S

(
a+b

2

)
is a good estimate if∣∣∣∣S(a, b)− S

(
a,
a+ b

2

)
− S

(
a+ b

2

)∣∣∣∣ < 15ε.

30

When the above condition isn’t met, we do the following. We divide [a, b]
into the subintervals [a, (a+b)/2] and [(a+b)/2, b]. We do this error estima-
tion procedure again, this time expecting a tolerance of ε/2 for the integral
on each subinterval. If this condition is met, we sum the two approximations.

If one of the subintervals fails this second time, we split it in half again,
this time expecting a tolerance of ε/4. We continue to do this until every
portion is within the required tolerance.

4.6 Gaussian Quadrature

Newton-Cotes formulas involve integrating the interpolating degree n poly-
nomial, leaving a residual on the order of the n + 1st derivative. Newton-
Cotes formulas use equally spaced intervals, which can decrease the accu-
racy of the approximation. For instance, the Trapezoidal rule interpolates
the endpoints of the integrating domain with a 1st degree interpolator; how-
ever, this line isn’t always the best line for approximating the integral.

Gaussian quadrature chooses optimally spaced evaluation points. We
choose nodes xi and coefficients ci to minimize the error of∫ b

a
f(x)dx ≈

n∑
i=1

cif(xi).

For example, we can determine c1, c2, x1, x2, for a polynomial of degree 3 or
less, for

∫ 1
−1 f(x)dx ≈ c1f(x1) + c2f(x2) by solving the system of equations

c1x
i
1 + c2x

i
2 =

∫ 1

−1
xidx

for i = 0, 1, 2, 3 (polynomial of degree 3) which in this case yields∫ 1

−1
f(x)dx ≈ f

(
−
√

3

3

)
+ f

(√
3

3

)
.

4.6.1 Legendre Polynomials

Instead of having to solve complex systems of equations to determine these
coefficients, we use a special set of polynomials.

31

Legendre Polynomials

The Legendre Polynomials are a set of polynomials
{P0(x), P1(x), ..., Pn(x), ...} with the following properties:

1. For each n, Pn(x) is a monic n-degree polynomial

2.
∫ 1
−1 P (x)Pn(x)dx = 0 whenever P (x) is of degree less than n

The first few Legendre polynomials are P0(x) = 1, P1(x) = x, P2(x) =
x2− 1

3 , P3(x) = x3− 3
5 , P4(x) = x4− 6

7x
2+ 3

35 . These polynomials have
distinct roots and all lie in [−1, 1]. The nodes needed for our Gaussian
quadrature method to give exact results for any polynomial of degree
less than 2n are the roots of the nth degree Legendre polynomial.

Legendre Polynomials and Gaussian Quadrature

Suppose xi, ..., xn are the roots of the nth Legendre polynomial Pn(x)
and for each i = 1, ..., n the numbers ci are

ci =

∫ 1

−1

n∏
j=1,j 6=i

x− xj
xi − xj

dx.

If Pn(x) is any polynomial of degree < 2n, then∫ 1

−1
P (x)dx =

n∑
i=1

ciP (xi).

Over an arbitrary interval [a, b], we can use the change of variables

t =
2x− a− b
b− a

⇐⇒ x =
1

2
[(b− a)t+ a+ b]

to allow for our standard quadrature method;∫ b

a
f(x)dx =

∫ 1

−1
f

(
(b− a)t+ (b+ a)

2

)(
b− a

2

)
dx.

4.7 Quadrature for Multiple Integrals

Consider the double integral over R = {(x, y)|x ∈ [a, b], y ∈ [c, d]}∫∫
R
f(x, y)dA.

32

For this, we iterate the integral and apply our quadrature methods as nor-
mal. ∫∫

R
f(x, y)dA =

∫ b

a

(∫ d

c
f(x, y)dy

)
dx.

This looks complicated, but is just a byproduct of our nesting method. Here,
Composite Simpson’s Rule for Double Integrals looks like:

∫ b

a

∫ d

c
f(x, y)dydx ≈hk

9


f(x0, y0) + 2

(n/2)−1∑
i=1

f(x2iy0)

+4

n/2∑
i=1

f(x2i−1, y0) + f(xn, y0)


+ 2

 (m/2)−1∑
j=1

f(x0, y2j) + 2

(m/2)−1∑
j=1

(n/2)−1∑
i=1

f(x2i, y2i)

+4

(m/2)−1∑
j=1

(n/2)∑
i=1

f(x2i−1, y2i) +

(m/2)−1∑
j=1

f(xn, y2j)


+4

m/2∑
j=1

f(x0, y2j−1) + 2

m/2∑
j=1

(n/2)−1∑
i=1

f(x2i, y2j−1

+4

m/2∑
j=1

n/2∑
i=1

f(x2i−1, y2j−1) +

m/2∑
j=1

f(xn, y2j−1


+

f(x0, ym) + 2

(n/2)−1∑
i=1

f(x2i, ym) + 4

n/2∑
i=1

f(x2i−1, ym) + f(xn, ym)

+ E

Here, the error term E is

E =
−k(b− a)h4

540

∂4f

∂x4
(ξ0, y0) + 2

(m/2)−1∑
j=1

∂4f

∂x4
(ξ2j , y2j) + 4

m/2∑
j=1

∂4f

∂x4
(ξ2j−1, y2j−1)

+
∂4

∂x4
(ξm, ym)

]
− (d− c)k4

180

∫ b

a

∂4f

∂y4
(x, µ)dx.

33

More simply put; we use the following diagram:

where w0,0 represents the bottom left corner. Then∫ b

a

(∫ d

c
f(x, y)dy

)
dx =

hk

9

n∑
i=0

m∑
j=0

wi,jf(xi, yj) + E

E = −(d− c)(b− a)

180

[
h4∂

4f

∂x4
(η̄, µ̄) + k4∂

4f

∂y4
(η̂, µ̂)

]
4.7.1 Gaussian Quadrature for Double Integral Approximation

We apply Gaussian methods in the same iterative fashion, except now we
must manipulate the bounds of both integrals rather than just one.

∫ b

a

∫ d

c
f(x, y)dydx ⇐⇒

∫ 1

−1

∫ 1

−1
f

(
1

2
[(b− a)u+ a+ b],

1

2
[(d− c)v + c+ d]

)
dvdu

If the region we’re integrating over is non-rectangular, i.e.∫ b

a

∫ d(x)

c(x)
f(x, y)dydx,

we follow all the same procedures, the key difference being the step size;
the step size in x is still (b − a)/n but for y is (d(x) − c(x))/m. Any of
the above methods naturally extends into more and more integrals, but
becomes increasingly computationally expensive (but remember, still much
less computationally expensive than trying to compute the integrals of these
functions!)

4.8 Improper Integrals

Here we consider integrals where one or more integrands is unbounded.

34

4.8.1 Left Endpoint Singularity

If the left endpoint of an interval is unbounded, we call it a left endpoint
singularity. We know from basic calculus that the integral with a left
endpoint singularity is of the form∫ b

a

dx

(x− a)p
,

which converges if and only if 0 < p < 1. For this, we define∫ b

a

1

(x− a)p
dx = lim

M−→a+

(x− a)1−p

1− p

∣∣∣∣x=b

x=M

=
(b− a)1−p

1− p
.

The improper integral
∫ b
a f(x) exists if, for 0 < p < 1, ∃ g(x) continuous on

[a, b] such that

f(x) =
g(x)

(x− a)p
.

Using Composite Simpson’s, assuming g ∈ C5[a, b], we construct the 4th

degree Taylor polynomial of g about a, as P4(x) = g(a)+g′(x−a)+ g′′(a)
2! (x−

a)2 + g′′′(a)
3! (x− a)3 + g(4)(a)

4! (x− a)4and rewrite our evaluation as∫ b

a
f(x)dx =

∫ b

a

P4(x)

(x− a)p
+
g(x)− P4(x)

(x− a)p
dx

We can evaluate the first element of the integrand easily, since it’s a poly-
nomial. This is∫ b

a

P4(x)

(x− a)p
dx =

4∑
k=0

∫ b

a

g(k)(a)

a!
(x−a)k−pdx =

4∑
k=0

g(k)(a)

k!(k + 1− p)
(b−a)k+1−p.

The second term requires us to define

G(x) =

{
g(x)−P4(x)

(x−a)p a < x < b

0 x = a
.

This is a continuous function on (a, b), meaning we can use composite Simp-
son’s rule on this term, add it to our previous answer, and get an approxi-
mation accurate to within the error of Composite Simpson’s.

35

In the case of right endpoint singularity, we simply turn it into a left-
endpoint problem! ∫ b

a
f(x)dx ⇐⇒

∫ −a
−b

f(−z)dz,

where z = −x, dz = −dx.

4.8.2 Infinite Singularity

The final case is where one of the limits of integration is infinite. This
integral typically looks like ∫ ∞

a

1

xp
dx.

For this we perform the subsitution

t = x−1, dt = −x−2dx ⇐⇒ dx = −x2dt = −t−2dt.

Then ∫ ∞
a

1

xp
dx =

∫ 1/a

0

1

t2−p
dt,

which gives us an integral with a left endpoint singularity at 0! More gener-
ally, we turn the infinite singularity problem into a left endpoint singularity
problem with ∫ ∞

a
f(x)dx =

∫ 1/a

0
t−2f

(
1

t

)
.

5 Initial-Value Problems for Ordinary Differential
Equations

Many natural phenomena in chemistry, biology, physics, and economics can
be described by equations that relate rates of change to state values. These,
equations, of the form

a0
dny(t)

dtn
+ ...+ an−1

dy(t)

dt
+ an = g(t),

are known as differential equations.

36

Key Topics

• 5.1: Lipschitz Conditions, Convex Sets, Well-Posed Problems

• 5.2: Euler’s Method, Mesh Points

• 5.3: Local Truncation Error, Taylor Method of Order n

• 5.4: Runge-Kutta Methods, Taylor Polynomials in Two Vari-
ables, Midpoint Method, Modified Euler Method, Higher-Order
Runge-Kutta, Heun’s Method

• 5.5: mth Order System of Differential Equations, Multivariate
Lipschitz Condition

• 5.6 One-Step and Multistep Methods, Explicit and Im-
plicit Methods, Adams-Bashforth Method, Adams-Moulton
Method, Predictor-Corrector Methods, Adams-Bashforth-
Moulton Method, Milne-Simpson Method

• 5.7 Consistency, Convergence, Stability, Root Condition, Char-
acteristic Polynomial, Strong/Weak Stability

• Stiff Differential Equations, Transient Equations, Test Equa-
tion, Region of Stability

5.1 The Elementary Theory of Initial-Value Problems

Here, we explore methods for solving differential equations that involve a
given initial condition. We typically do not solve these for actual polyno-
mials; rather, we determine approximations of the solution at given points,
and then use interpolation to determine intermediate values.

Lipschitz Conditions

A function f(t, y) is said to satisfy a Lipschitz condition in the
variable y on a set D ⊂ R2 if a constant L > 0 exists with

|f(t, y1)− f(t, y2)| ≤ L|y1 − y2|,

whenever (t, y1) and (t, y2) are in D. L is then a Lipschitz constant
for f .

37

Convex Set

A set D ⊂ R2 is convex if whenever (t1, y1) and (t2, y2) are in D,
then ((1− λ)t1 + λt2, (1− λ)y1 + λy2) are in D for every λ ∈ [0, 1].

In fact, if f(t, y) is defined on a set D which is convex, then f satisfies
a Lipschitz condition on D in the variable y with Lipschitz constant L if
∃L > 0 : ∣∣∣∣∂f∂y (t, y)

∣∣∣∣ ≤ L, ∀(t, y) ∈ D.

Let D = {(t, y)|a ≤ t ≤ b, y ∈ R} and let f(t, y) be continuous on D. If f is
Lipschitz on D in y, then

y′(t) = f(t, y), a ≤ t ≤ b, y(a) = α

has a unique solution y(t) for a ≤ t ≤ b.
Well-Posed Problem

The initial-value problem

dy

dt
= f(t, y), a ≤ t ≤ b, y(a) = α

is a well-posed problem if

1. A unique solution y(t) to the problem exists, and

2. There exist constants ε0 > 0 and k > 0 such that for any ε,
with ε0 > ε > 0, whenever δ(t) is continuous with |δ(t)| < ε for
all t ∈ [a, b], and when |δ0| < ε, the initial-value problem

dz

dt
= f(t, z) + δ(t), a ≤ t ≤ b, z(a) = a+ δ0

has a unique solution z(t) that satisfies

|z(t)− y(t)| < kε, ∀t ∈ [a, b].

The condition in (2) is known as the perturbed problem.

If D = {(t, y)|a ≤ t ≤ b, y ∈ R} and f is continuous and is Lipschitz on D
in y, then the initial value problem

dy

dt
= f(t, y), a ≤ t ≤ b, y(a) = α

38

is well-posed.

5.2 Euler’s Method

Euler’s approximation is the simplest technique for approximating initial-
value problems. Euler’s method approximates the well-posed initial-value
problem

dy

dt
= f(t, y), a ≤ t ≤ b, y(a) = α

at a set of N discrete, equally-spaced mesh points in [a, b], where the dis-
tance between mesh points is known as the step size and is denoted as h.

Euler’s method constructs wi ≈ y(ti) for each i = 1, 2, ..., N as follows:

w0 = α,

wi+1 = wi + hf(ti, wi), ∀i = 0, 1, ..., N

Euler’s method is typically not accurate enough to use in practice. How-
ever, it is a good enough approximation to warrant analyzing its error bound.

For the error, we rely on two computational truths:

1. ∀x ≥ −1, ∀m > 0, 0 ≤ (1 + x)m ≤ emx

2. If s, t ∈ R+, and {ai}ki=0 is a sequence satisfying a0 ≥ −t/s and

ai+1 ≤ (1 + s)ai + t, ∀i = 0, 1, 2, ..., k − 1,

then

ai+1 ≤ e(i+1)s

(
a0 +

t

s

)
− t

s
.

Then if f is continuous and Lipschitz in y on

D = {(t, y)|a ≤ t ≤ b, y ∈ R}

with Lipschitz constant L, and there is a constant M such that

|y′′(t)| ≤M ∀t ∈ [a, b]

where y(t) is the solution to

y′(t) = f(t, y), a ≤ t ≤ b, y(a) = α,

39

and if w0, ..., wN are the Euler’s method approximations for a positive integer
N , then for each i = 0, 1, ..., N

|y(ti)− wi| ≤
hM

2L
[eL(ti−a) − 1].

If we don’t know y(t), we can use the multivariate chain rule to calculate

y′′(t) =
∂f

∂t
(t, y(t)) +

∂f

∂y
(t, y(t)) · f(t, y(t)).

5.3 Higher-Order Taylor Methods

In order to determine the accuracy of differential approximation methods,
we use the local truncation error. For the initial problem

y′ = f(t, y), a ≤ t ≤ b, y(a) = α,

the difference method

w0 = α

wi+1 = wi + hφ(ti, wi), i = 0, 1, ..., N

has local truncation error

τi+1(h) =
yi+1 − yi

h
− φ(ti, yi).

Taylor Method of Order n

Taylor’s method of order n is the following difference equation:

w0 = α

wi+1 = wi + hT (n)(ti, wi)

where

T (n)(ti, wi) = f(ti, wi) +
h

2
f ′(ti, wi) + . . .+

hn−1

n!
f (n−1)(ti, wi).

Euler’s method is Taylor’s method of order 1.

If Taylor’s method of order n is used to approximate the solution to

y′ = f(t, y), a ≤ t ≤ b, y(a) = α,

with step size h and if y ∈ Cn+1[a, b] then the local truncation error is O(hn).

40

5.4 Runge-Kutta Methods

Taylor’s methods improve on Euler’s method by allowing for high-order lo-
cal truncation error. However, Taylor’s methods require the computation
and evaluations of derivatives of f which can be unwieldy.

Runge-Kutta methods have the high-order truncation error of Taylor
polynomials without needing to compute derivatives of f . Before we begin,
we establish the following:

Suppose f(t, y) and all its partial derivatives of order less than or equal
to n + 1 are continuous on D = {(t, y)|a ≤ t ≤ b, c ≤ y ≤ d} and let
(t0, y0) ∈ D. For every (t, y) ∈ D, there is ξ between t and t0 and µ between
y and y0 with

f(t, y) = Pn(t, y) +Rn(t, y),

where:

Pn(t, y) =
n∑
i=0

1

i!

i∑
j=0

(
i

j

)
(t− t0)i−j(y − y0)j

∂if

∂ti−j∂yj
(t0, y0),

Rn(t, y) =
1

(n+ 1)!

n+1∑
j=0

(
n+ 1

j

)
(t− t0)n+1−j(y − y0)j

∂n+1f

∂tn+1−j∂yj
(ξ, µ).

Pn(t, y) is the nth order Taylor polynomial in two variables for f
about (t0, y0) and Rn(t, y) is the remainder term associated with Pn(t, y).

5.4.1 Runge-Kutta Methods of Order Two

We first determine values for a1, α1, and β1 with the property that a1f(t+
α1, y + β1) approximates

T (2)(t, y) = f(t, y) +
h

2
f ′(t, y)

with error at most O(h2). Expanding a1f(t + α1, y + β1) using its Taylor
polynomial

T (2)(t, y) = f(t, y) +
h

2

∂f

∂t
(t, y) +

h

2

∂f

∂y
(t, y) · f(t, y).

We determine through computation (not shown here) is a1 = 1, α1 = h
2 , β1 =

h
2f(t, y).

41

Midpoint Method

The specific Runge-Kutta method of order 2 derived from the param-
eters above is known as the midpoint method.

w0 = α,

wi+1 = wi + hf

(
ti +

h

2
, wi +

h

2
f(ti, wi)

)

These 3 parameters are enough to match T (2). The most appropriate form
for approximating

T (3)(t, y) = f(t, y) +
h

2
f ′(t, y) +

h2

6
f ′′(t, y)

is
a1f(t, y) + a2f(t+ α2, y + δ2f(t, y)).

There is not enough flexibility here to match the term h2

6 f
′′(t, y); therefore

the best error we can get is O(h2). However, with 4 parameters we have
more freedom in our methods.

Modified Euler Method

The modified Euler method is defined as the following difference
equation:

w0 = α,

wi+1 = wi +
h

2
[f(ti, wi) + f(ti+1, wi + hf(ti, wi))]

5.4.2 Higher-Order Runge-Kutta Methods

We can approximate T (3)(t, y) can be approximated to an order of O(h3) by
an expression of the form

f(t+ α1, y + δ1f(t+ α2, y + δ2f(y, t))).

We disregard the calculations here (they get quite complicated) but we can
find a difference equation in 4 parameters.

42

Heun’s Method

The most common O(h3) approximation for T (3)(t, y) is Heun’s
method, given by the difference equation

w0 = α

wi+1 = wi +
h

4
(f(ti, wi) + 3f(ti +

2h

3
f(ti +

h

3
, wi +

h

3
f(ti, wi)))

it should be noted that 3rd order Runge-Kutta is not typically used.

The most common Runge-Kutta method is of order 4. We skip the derivation
and focus on the difference equation:

w0 = α

k1 = hf(ti, wi)

k2 = hf

(
ti +

h

2
, wi +

1

2
k1

)
k3 = hf

(
ti +

h

2
, wi +

1

2
k2

)
k4 = hf(ti+1, wi + k3)

wi+1 = wi +
1

6
(k1 + 2k2 + 2k3 + k4)

Provided that y(t) has five continuous derivatives, this method has local
truncation error O(h4).

5.5 Higher-Order Equations and Systems of Differential Equa-
tions

Here, we we discuss techniques that solve systems of first-order differential
equations that are a transformation of a higher-order differential equation.

43

An mth order system of first-order initial-value problems has the form

du1

dt
= f1(t, u1, u2, ..., um),

du2

dt
= f2(t, u1, u2, ..., um),

...

dum
dt

= fm(t, u1, u2, ..., um),

with the initial conditions

u1(a) = α1, u2(a) = α2, ..., um(a) = αm.

Multivariate Lipschitz Condition

The function f(t, y1, ..., ym) defined on the set

D = {(t, u1, ..., um)|a ≤ t ≤ b, ui ∈ R∀i ∈ [1,m]}

is said to satisfy a Lipschitz condition on D in u1, ..., um if L > 0
exists with

|f(t, u1, ..., um)− f(t, z1, ..., zm)| ≤ L
m∑
j=1

|uj − zj |,

for all (t, u1, ..., um) and (t, z1, ..., zm) in D.

We discover the uniqueness of solutions from an analogous multivariate case
as was discussed in section 5.1. Now, we can describe a variant of the 4th
order Runge-Kutta method for systems of initial-value problems. Partition
the interval [a, b] into N subintervals with mesh points tj = a + hj. Then
let wij denote an approximation for ui(tj) (the ith solution ui(t) at the jth

44

mesh point tj). Then:

wi,0 = αi

k1,i = hfi(tj , w1,j , w2,j , ..., wm,j), ∀i ∈ [1,m]

k2,i = hfi

(
tj +

h

2
, w1,j +

1

2
k1,1, w2,j +

1

2
k1,2, ..., wm,j +

1

2
k1,m

)
, ∀i ∈ [1,m]

k3,i = hfi

(
tj +

h

2
, w1,j +

1

2
k2,1, w2,j +

1

2
k2,2, ..., wm,j +

1

2
k2,m

)
, ∀i ∈ [1,m]

k4,i = hfi(tj + h,wi,j + k3,1, w2,j + k3,2, ..., wm,j + k3,m), ∀i ∈ [1,m]

wi,j+1 = wi,j +
1

6
(k1,i + 2k2,i + 2k3,i + k4,i) ∀i ∈ [1,m]

An mth order initial value problem

y(m)(t) = f(t, y, y′, ..., y(m−1)), a ≤ t ≤ b,

with initial conditions y(a) = α1, ..., y
(m−1)(a) = αm can be converted into a

system of first-order equations. Let y(i)(t) = ui+1(t), so u1(t) = y(t), u2(t) =
y′(t), etc. so that ui+1 = dui

dt . We can then form a system of equations
as before using these assignments and solve using our above Runge-Kutta
method for systems.

5.6 Multistep Methods

The methods we’ve seen so far to calculate wi+1 are one-step methods.
This means that they only depend on mesh points ti and perhaps ti+1. How-
ever, remember that as j increases the error |wj−yj | also increases. For that
reason, it might be valuable to use earlier mesh points in our approxima-
tion, since the approximations at earlier mesh points are likely much more
accurate than the approximation at the previous mesh point.

Consider a standard initial-value problem

y′ = f(t, y), a ≤ t ≤ b y(a) = α.

The m-step multistep method for solving this initial value problem is of
the form

wi+1 =am−1wi + am−2wi−1 + ...+ a0wi+1−m

+ h[bmf(ti+1, wi+1) + bm−1f(ti, wi)

+ ...+ b0f(ti+1−m, wi+1−m)]

45

Here, i takes on values from m − 1 to N − 1, and aj and bj are constants.
When the value bm is 0, the method is explicit or closed (wi+1 only appears
on the LHS); otherwise, it is implicit or open. Here we explore two m-
step multistep methods that were both developed to help model physical
phenomena; fluid mechanics and ballistic equations.

Fourth-Order Adams-Bashforth Technique

For i = 3, 4, ..., N − 1 the following is an explicit four-step method.
For initial conditions w0 = α0, w1 = α1, w2 = α2, w3 = α3:

wi+1 =wi +
h

24
[55f(ti, wi)− 59f(ti−1, wi−1)

+ 37f(ti−2, wi−2)− 9f(ti−3, wi−3)]

Fourth-Order Adams-Moulton Technique

For i = 2, 3, ..., N − 1 the following is an implicit three-step method.
For initial conditions w0 = α0, w1 = α1, w2 = α2:

wi+1 =wi +
h

24
[9f(ti+1, wi+1) + 19f(ti, wi)

− 5f(ti−1, wi−1) + f(ti−2, wi−2)]

Do not be alarmed by the need for several initial conditions; we typically use
a different method (i.e. Runge-Kutta) to find approximations at the first
few mesh points and then proceed with multistep methods from there on.
Implicit methods are generally more accurate than explicit methods, but we
cannot always solve the implicit equation for wi+1.

In order to derive a more general m-step method, we begin with our ini-
tial value problem and integrate it over the interval [ti, ti+1], so

y(ti+1) = y(ti) +

∫ ti+1

ti

f(t, y(t))dt.

Since we cannot take the integral of f directly (as this would require know-
ing the solution already), we replace f with the interpolating polynomial
P (t) interpolating the i points (t0, w0), ..., (ti, wi). Then our approximation
is y(ti+1) ≈ wi +

∫ ti+1

ti
P (t)dt.

As an example, take the Adams-Bashforth method from earlier. Suppose

46

instead of the four-step method, we want a general m-step method. We use
Newton’s backward differences to find an interpolating polynomial, since
it makes the most use of recently calculated data. From this, we get the
following:∫ ti+1

ti

f(t, y(t))dt ≈
∫ ti+1

ti

m−1∑
k=0

(−1)k
(
−s
k

)
∇kf(ti, y(ti))dt

=
m−1∑
k=0

∇kf(ti, y(ti))h(−1)k
∫ 1

0

(
−s
k

)
ds.

Using a divided differences table and integral table, we can verify the for-
mulation we have shown above, as well as find Adams-Bashforth methods
of various orders.

Truncation Error

The local truncation error for a multistep method as defined previ-
ously is

τi+1(h) =
y(ti+1)− am−1y(ti)− ...− a0y(ti+1−m)

h
− [bmf(ti+1, y(ti+1)) + ...+ b0f(ti+1−m, y(ti+1−m))]

5.6.1 Predictor-Corrector Models

In practice, we rarely use implicit multistep methods in isolation because
it is often difficult to solve for wi+1. We usually use implicit methods to
correct approximations made by an explicit method; this combination of an
explicit predictor and an implicit corrector is called a predictor-corrector
method. Typically, we’ll take the output of an explicit model and use it
as an approximation for wi+1 on the RHS of the implicit model. A classic
example is to use Adams-Bashforth for the explicit portion and Adams-
Moulton for the implicit; we call this the Adams-Bashforth-Moulton
method.

47

Milne-Simpson Method

Another predictor-corrector model involves the following:
Milne’s Method (explicit)

wi+1 = wi−3 +
4h

3
[2f(ti, wi)− f(ti−1, wi−1) + 2f(ti−2, wi−2)]

Simpson’s Method (implicit)

wi+1 = wi−1 +
h

3
[f(ti+1, wi+1) + 4f(ti, wi) + f(ti−1, wi−1)]

5.7 Stability

Methods presented thusfar approximate the solution to an initial-value prob-
lem. However, these are obviously not a comprehensive set of methods; what
determines whether not an initial-value estimation method is good or not?

5.7.1 One-Step Methods

Consistency

A one-step difference equation with local truncation error τi(h) at the
ith step is consistent if

lim
h−→0

max
1≤i≤n

|τi(h)| = 0.

Convergence

A one-step difference method is convergent with respect to the dif-
ferential equation if

lim
h−→0

max
1≤i≤n

|wi − y(ti)| = 0.

The definition of convergence makes sense intuitively; as we get an infinite
amount of granularity, we expect the absolute error to disappear. Consis-
tency means something slightly different – it implies that as the step size
approaches 0, the difference equation increasingly resembles the original dif-
ferential equation.

48

Due to round-off errors, we often run into tricky situations even with con-
vergent methods. Instead of directly testing the convergence, we test the
notion of stability, where a minor perturbation to the input results in a
minor perturbation to the output.

Stability

Suppose we approximate the initial value problem

y′ = f(t, y), a ≤ t ≤ b y(a) = α

is approximated by

w0 = α

wi+1 = wi + hφ(ti, wi, h)

Suppose there exists a positive h0 with φ continuous and Lipschitz in
w with constant L on

D = {(t, w, h)|a ≤ t ≤ b, −∞ < w <∞, 0 ≤ h ≤ h0}.

This method is stable. It is convergent if and only if it is consistent,
i.e.

φ(t, y, 0) = f(t, y), a ≤ t ≤ b.

Finally, if a function τ exists and, for each i = 1, 2, ..., N , the local
truncation error τi(h) satisfies |τi(h)| ≤ τ(h) when 0 ≤ h ≤ h0, then

|y(ti)− wi| ≤
τ(h)

L
eL(ti−a).

5.7.2 Multistep Methods

Our definitions for consistency, convergence, and stability for multistep
methods are similar to our definitions for one-step methods.

49

Convergence

A multistep difference method is convergent if the solution to the
difference eqution approaches the solution to the differential equation
as the step size approaches 0.

lim
h−→0

max
0≤i≤N

|wi − y(ti)| = 0.

Consistency

Consistency is slightly different for multistep methods. Note that we
have multiple starting values wi = αi for our multistep methods. In
order for our multistep method to be consistent, the one-step method
that generates the starting values must also be consistent. In other
words, we require the following:

lim
h−→0

|τi(h)| = 0, i = m, ..., N

lim
x−→0
|αi − y(ti)| = 0, i = 1, ...,m− 1

Stability is slightly more complicated for multistep methods. For the mul-
tistep described by the difference equation

w0 = α0, w1 = α1, ..., wm−1 = αm−1

wi+1 = am−1wi + am−2wi−1 + ...+ α0wi+1−m + hF (ti, h, wi+1, wi, ..., wi+1−m),

there exists a characteristic polynomial

P (λ) = λm − amλm−1 − ...− α1λ− α0.

The stability of the multistep method depends on the roots of this poly-
nomial. If |λi| ≤ 1 for each i, and all the roots are simple roots, then the
difference equation is said to satisfy the root condition. Keep in mind that
the roots are in C, not just in R.

1. Methods that satisfy the root condition and have λ = 1 as the only
root with magnitude 1 are strongly stable.

2. Methods that satisfy the root condition and have multiple roots with
magnitude 1 are weakly stable.

3. Methods which do no not satisfy the root condition are unstable.

50

A multistep method is stable if and only if it satisfies the root condition. If
the difference method is consistent with the differential equation, then the
method is stable if and only if it is also convergent.

5.8 Stiff Differential Equations

Throughout this chapter, we have seen multiple methods for approximating
the solutions to initial-value problems. All of the methods have an error
term that depends on a (higher) derivative of the solution. If we can rea-
sonably bound the derivative, this is completely fine. Even if the derivative
grows with step size, we can keep it under control as long as the solution is
growing as well.

The major issues arise when the derivative grows very fast and the solu-
tion does not. These equations are those whose solutions have a term of the
form e−ct, and are called stiff differential equations. This term is called
a transient term. As t increases, the solution itself decays rapidly to 0.
However, its nth derivative has magnitude cne−ct, which decays much more
slowly (or can even grow exponentially).

Fortunately, there is a simple way to know how a numerical method will
behave when confronted with a stiff differential equation. The simplest ex-
ponential equation we can think of y(t) = αeλt. Note that y′ = λαeλt, or
y′ = λy. In fact, we can simply test our numerical method on this equation,
the test equation, with

y′ = λy, y(0) = α, λ < 0.

The steady-state (the solution as t tends to infinity) is 0, so we have an
easy way of knowing how to benchmark our methods.

In general, when we apply a one-step difference method to the test equation,
we can get an equation of the form

wi+1 = Q(hλ)wi.

The accuracy of the method depends on how well Q(hλ) approximates ehλ,
and the error will be uncontrollable if |Q(hλ)| > 1.

When we apply a multi-step method to the test equation, we get

wj+1 = (1−hλbm)wj+1− (am−1 +hλbm−1)wj− ...− (a0 +hλb0)wj+1−m = 0.

51

Rearranging terms, we form a different characteristic polynomial

Q(z, hλ) = (1− hλbm)zm − (am−1 + hλb+m− 1)zm−1 − ...− (a0 + hλb0).

If we let β1, ..., βm be the roots of this characteristic polynomial, we can
rewrite it as

wj =

m∑
k=0

ck(βk)
j , j = 0, ..., N.

For stability, |βk| < 1.

Now we have a way of knowing whether or not a method is unstable, i.e.
whether or not it is only accurate for very small step sizes. If we determine
a method is unstable, it would be beneficial to also know how much we need
to reduce the step size by to get good solutions.

Region of Stability

The region of stability R for a one-step method is

R = {hλ ∈ C| |Q(hλ)| < 1}.

For a multistep method, it is

R = {hλ ∈ C| |βk| < 1},

where βk is a root of the characteristic polynomial Q(z, hλ).

A method can only be applied to a stiff equation if hλ is within the region
of absolute stability, and this restricts the value of h, the step size. This
criterion places a very strict limit on the magnitude of h. A method is A-
stable if the entire left half-plane is contained within the region of stability.
That is to say, the stability criterion is satisfied for all hλ where Re(hλ) < 0.
The only A-stable multistep method is the implicit trapezoidal method.

6 Direct Methods for Solving Linear Systems

Systems of linear equations have applications in a wide breadth of fields in
science, mathematics, economics, and social sciences. We consider direct
methods for solving a system of n linear equations in n variables, which

52

generally has form

E1 : a11x1 + a12x2 + ...a1nxn = b1

E2 : a21x1 + a22x2 + ...a2nxn = b2
...

En : an1x1 + an2x2 + ...annxn = bn

Key Topics

• 6.1: Triangular Form, Row-Reduction, Back-Substitution, Ma-
trix, Vector, Augmented Matrix, Gaussian Elimination, Pivot

• 6.2: Partial Pivoting, Scaled Partial Pivoting

• 6.3: Matrix Equality, Vector Space, Matrix-Vector Product,
Matrix-Matrix Product, Square Matrices, Diagonal Matrices,
Identity Matrices, Upper and Lower Triangular Matrices, Sin-
gular Matrices, Matrix Inverses, Transpose

• 6.4: Determinant, Minor, Cofactor

• 6.5: LU Factorization, Permutation Matrices, Doolittle’s
Method

• 6.6: Diagonally Dominant Matrices, Positive Definiteness, Prin-
ciple Submatrices, LDL> Decomposition, Cholesky Decompo-
sition, Band Matrices, Tridiagonal Matrices, Crout’s Method

6.1 Linear Systems of Equations

In order to simplify a system of equations, we use 3 simple operations.

1. Equation Ei can be multiplied by any nonzero constant λ, and substi-
tute the result in place of Ei. We write (λEi) −→ (Ei).

2. We can multiply Ej by λ and add Ei, and substitute the result in place
of Ei. We write (Ei + λEj) −→ (Ei).

3. We can swap the positions of Ei and Ej . We write (Ei) ⇐⇒ (Ej).

Our goal is to use the first equation to eliminate the first variable from all
other equations, and the nth row to reduce the nth variable from all other

53

equations. In doing so, we use these operations to get a system of the form

E1 : a′11x1 + a′12x2 + ...a′1nxn = b′1

E2 : a′22x2 + ...a′2nxn = b′2
...

En : a′nnxn = b′n

This is called reduced or triangular form. We can then solve for the value
of xn in equation En and use it to solve for xn−1 in equation En−1. We
continue this process until we have the solutions for each x. This process is
called back-substitution.

6.1.1 Matrices and Vectors

We don’t need to write the full system of equations at every step. Really,
the only things that are important in this solving process are the coefficients
of the values. We can replace the linear system by a n n × m matrix, a
rectangular array of elements with n rows and m columns where the values
at each position are important, as well as the position of each element. An
1 × n matrix is a n-dimensional row vector and an n × 1 matrix is an
n-dimensional column vector. We can write the coefficients of the LHS
of the equation in an n× n matrix:

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann


The values on the RHS can be written as a column vector:

b =


b1
b2
...
bn


We can construct a single matrix that contains all of this information by
constructing the following augmented matrix [A,b].

a11 a12 . . . a1n b1
a21 a22 . . . a2n b2
...

...
. . .

...
...

an1 an2 . . . ann bn


54

We can use the same 3 operations for row-reduction and back-substitution,
except now we operate on this matrix instead of on systems of equations.
The actual logic of how these substitutions work is the same. Ultimately,
we try to do this:
a11 a12 . . . a1n b1
a21 a22 . . . a2n b2
...

...
. . .

...
...

an1 an2 . . . ann bn

 −→

a′11 a′12 . . . a′1n b′1
0 a′22 . . . a′2n b′2
...

...
. . .

...
...

0 0 . . . a′nn b′n

 −→

a′′11 0 . . . 0 b′′1
0 a′′22 . . . 0 b′′2
...

...
. . .

...
...

0 0 . . . a′′nn b′′n


This procedure is known as Gaussian elimination. Notice that this ex-
ample breaks when we get a “0” as an element in one of the spots aii (the
main diagonal) of the matrix. This 0 element is called a pivot, and we
need a way to get around it to be able to make our algorithm robust. What
we do is start from the pivot and look at the elements below it in the same
column. If we find an element that is nonzero, we swap the row of the pivot
and the row of the nonzero element and continue.

The total number of multiplications/divisions for Gaussian elimination is
n3

3 +n2− n
3 . The total number of additions/subtractions for Gaussian elim-

ination is n3

3 + n2

2 −
5n
6 .

6.2 Pivoting Strategies

Sometimes we would like to swap rows even if we don’t have a 0 pivot
element. When the element we are using for elimination is very small in
magnitude compared to another element in its column, we introduce round-
off error which compounds though the elimination and back-substitution
process.

55

Partial Pivoting

To counter the above issue, we can use partial pivoting. In this
scenario, we examine element akk as our pivot element. We then
determine the row p such that

|apk| = max
k≤i≤n

|aik|.

We then perform the operation (Ek) ⇐⇒ (Ep). In other words, we
swap the “pivot” row with the row that has the largest element in
that column. Note that we don’t have to just do this with rows; if
necessary, we can also do this with column vectors.

Partial pivoting is also not enough in all cases. If all elements in a row
are consistently significantly larger than all elements in another, we can get
the same compounding error inaccuracy as before. Instead, we introduced
scaled partial pivoting. Here, we don’t just swap in the row with the
largest element in the appropriate column; we swap in the row with the
largest element in the appropriate column compared to the other elements
in that row. We find a scaling factor

si = max
i≤j≤n

|aij |.

If this scaling factor is 0, there is no solution. The row for row interchange
is then

|apk|
sp

= max
k≤i≤n

|aik|
sk

,

and we perform (Ek) ⇐⇒ (Ep).

6.3 Linear Algebra

Here we define some basic concepts in linear algebra.

Two matrices A and B are equal if they have the same number of rows
and columns and the same elements in the same positions.

The sum of two n × m matrices A and B is an n × matrix C such that
cij = aij + bij .

The scalar multiplication of a matrix A with a real number λ is a matrics

56

C with cij = λaij . If we denote O as a matrix of all 0’s and −A as the ma-
trix whose entries are −aij , we have enough information to define the set of
all matrices as a vector space over the field of real numbers. The actual
properties required for this are omitted here; they are covered in depth in
Math110, Math104, and Math113.

A matrix-vector product of an n × m matrix A and an m-dimensional
column vector b is an n-dimensional column vector Ab where the jth entry
in Ab is

∑m
i=1 ajibi.

A matrix-matrix product of an n × m matrix A and an m × p matrix
B is the n× p matrix C where cij =

∑m
k=1 aikbkj . Note that by this defini-

tion, matrix-matrix multiplication is not commutative.

A square matrix has the same number of rows and columns. A diago-
nal matrix A is one such that aij = 0 if i 6= j. The identity matrix I
is a diagonal matrix where all entries on the diagonal are 1. An upper
triangular matrix has a 0 for all entries below the main diagonal; a lower
triangular matrix has a 0 for all entires above the main diagonal.

A matrix A is nonsingular if there exists a matrix A−1 such that AA−1 =
A−1A = I. A−1 is the inverse of A. A matrix that has no inverse is called
singular.

Matrix Inverses

For a nonsingular matrix A:

1. A−1 is unique

2. A−1 is nonsingular and (A−1)−1 = A

3. If B is also nonsingular, then (AB)−1 = B−1A−1.

We can find the inverse of a matrix by solving the augmented matrix
[A|I] using Gaussian elimination.

The transpose of an n × m matrix A, denoted A>, is an m × n matrix
where a>ij = aji. A square matrix is symmetric if A = A>. If the following

operations are possible, then (A + B)> = A> + B>, (AB)> = B>A>, and
(A−1)> = (A>)−1.

57

6.4 Determinants

The determinant of a matrix is a value that allows us to determine the
existence and uniqueness of the results of the corresponding linear system.

Determinant

For a square matrix A, we define the following:

1. If A = [a] is a 1× 1 matrix, then det A = a.

2. for an n× n matrix with n > 1, the minor Mij is the determi-
nant of the (n− 1)× (n− 1) matrix that results from removing
row i and column j from the original matrix.

3. The cofactor Aij associated with Mij is Aij = (−1)i+jMij .

4. The determinant of an n × n matrix A is then either of the
following

det A =

n∑
j=1

aijAij for any row i

det A =

n∑
i=1

aijAij for any column j

We additionally list some properties of the determinant, and its relation-
ship to the steps of Gaussian elimination.

1. If any row or column of A has only 0 as elements, then det A = 0.

2. If two rows or columns of A are the same then det A = 0.

3. If we perform a row swap (Ei)(Ej) when reducing A to Ã then det A =
−det Ã.

4. If we perform a scalar multiplication (λEi) −→ (Ei), then det Ã =
λ det A.

5. If B is also an n× n matrix, then det AB = det A + det B.

6. det A> = det A, and det A−1 = (det A)−1.

7. If A is upper triangular, lower triangular, or diagonal, then det A is
the product of the elements along the main diagonal.

58

Determinants give us key insight into nonsingularity. The following state-
ments are all equivalent.

1. The equation Ax = 0 has a unique solution x = 0

2. Ax = b has a unique solution for any n-dimensional column vector b.

3. A−1 exists.

4. det A 6= 0.

5. Gaussian elimination with pivoting can be performed on A.

6.5 Matrix Factorization

Solving a linear system using our elimination methods takes O(n3), as we
saw previously. However, the back-substitution portion of an upper trian-
gular matrix takes only O(n2). Here we explore a way to split a matrix into
a lower triangular and upper triangular matrix for this purpose. Once we
have these two matrices, which we denote A = LU,we can solve LUx = b
by letting y = Ux, solving Ly = b, and then solving for x. This reduces
the total time from O(n3) to O(n2).

In Gaussian elimination, we begin by eliminating all the values below the
main diagonal. We do this through the operation (Ej − λj,iEi) −→ (Ej),
where i < j. The matrix L is then

L =


1 0 . . . 0 0
−λ2,1 1 . . . 0 0

...
...

. . .
...

...
−λn,1 −λn,2 . . . −λn,n−1 1


U is simply the upper triangular matrix we get from our normal row-
reduction. This method is known as Doolittle’s Method and requires 1s
along the main diagonal of L. Alternate methods include Crout’s method,
where we require 1s on the main diagonal of U, and Cholesky’s method,
which requires lii = uii.

The above method assumes that Gaussian elimination can succeed without
pivoting. If we need pivoting to successfully perform Gaussian elimination
on A, we multiply A by a matrix P, a permutation matrix. The permu-
tation matrix is an identity matrix with the pivoting operations performed

59

on it, such that PA does not require pivoting. We can then factor PA into
LU. Since P−1 = P>, A = P−1LU = (P>L)U. Note that while U is still
upper triangular, but P>L is not necessarily lower triangular.

6.6 Special Matrices

Diagonally Dominant Matrices

A matrix is diagonally dominant if the element in each row that
is part of the main diagonal is greater than the sum of the other
elements in the row.

|aii| ≥
∑
j 6=i
|aij |

A diagonally dominant matrix is strictly diagonally dominant if

|aii| >
∑
j 6=i
|aij |.

Strictly diagonally dominant matrices are nonsingular and do not
require row interchanges during Gaussian elimination.

Positive Definite Matrices

A matrix A is positive definite if it is symmetric and for every
nonzero n-dimensional vector x, x>Ax > 0. This implies that A has
an inverse, aii > 0 for all i, max ak,j ≤ max ai,i, and (aij)

2 < aiiajj
for all i, j.

Leading Principle Submatrices

The kth leading principle submatrix of A is a k × k matrix con-
taining the elements of the first k rows and k columns of A. A sym-
metric matrix is only positive definite it all of its leading principle
submatrices have positive determinants.

A symmetric matrix A is positive definite if and only if Ax = b can be
solved without row interchanges with a positive main diagonal. From this,
we get two interesting facts:

1. A is positive definite if and only if it can be factored into LDL>,
where L is lower triangular with 1s on its main diagonal, and D is a
diagonal matrix with only positive entries.

60

2. A is positive definite if and only if it can be factored into LL>, where
L is lower triangular. This L is not the same L as in (1).

For (1), we can very simply pattern match to find the decomposition; the
process is illustrated here for a 3× 3 matrix

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

 1 0 0
l21 1 0
l31 l32 1

d1 0 0
0 d2 0
0 0 d3

1 l21 l31

0 1 l32

0 0 1


=

 d1 d1l21 d1l31

d1l21 d2 + d1l
2
21 d2l32 + d1l21l31

d1l31 d1l21l31 + d2l32 d1l
2
31 + d2l

2
32 + d3


Equivalently, we can use Doolittle’s method and perform Gaussian elimi-
nation on the above; the main diagonal of the upper triangular matrix in
Gaussian elimination corresponds to D. Our LL> decomposition, also called
Cholesky decomposition, follows a similar process.

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

l11 0 0
l21 l22 0
l31 l32 l33

l11 l21 l31

0 l22 l32

0 0 l33


=

 l211 l11l21 l11l31

l11l21 l221 + l222 l21l31 + l22l32

l11l31 l21l31 + l22l32 l231 + l232 + l233


Band Matrices

A band matrix is an n×n matrix where the only nonzero entries are
on diagonals of the matrix. They are defined by two numbers, p and
q, where p describes the number of diagonals above and including the
main diagonal, and q describes the number of diagonals below and
including the main diagonal. The value w = p + q − 1, the total
number of diagonals with nonzero entries, is called the bandwidth.
A band matrix with p = q = 2 is known as a tridiagonal matrix.
An example of a tridiagonal matrix is shown below:

a11 a21 0 . . . 0
a21 a22 a23 . . . 0
0 a32 a33 . . . 0
...

...
...

. . .
...

0 0 0 . . . ann



61

A tridiagonal matrix also has a unique LU factorization. This method,
known as Crout’s method, allows us to decompose a tridiagonal matrix
A into L and U, where L is a lower triangular band matrix (i.e. p = 0) and
U is an upper triangular band matrix with 1s on its main diagonal.

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

l11 0 0
l21 l22 0
0 l32 l33

1 u12 0
0 1 u23

0 0 1


=

l11 l11u12 0
l21 l21u12 + l22 l22u23

0 l32 l32u23 + l33


If elements of the main diagonal of a tridiagonal matrix are larger in magni-
tude than the sum of the magnitudes of the other elements in the same row,
and ai, ai−1, ai+1 6= 0, the matrix is nonsingular. That is to say, if |a11| >
|a12|, |aii| ≥ |ai,i+1| + |ai,i−1|, and |ann| > |an,n−1|, with ai, ai−1, ai+1 6= 0,
the matrix is nonsingular and each lii is nonzero.

62

