EE 127 Notes

Kanyes Thaker

Spring 2019

Optimization Models

Optimization refers to a branch of applied mathematics concerned with the
minimization or maximization of a certain function, possibly under con-
straints. This course covers linear algebra, convex optimization problems,
and duality. This guide is based on Optimization Models and Appli-
cations by Laurent Al Ghaoui, as well as lectures by Gireeja Ranade and
Alexander Bayen. This course is extremeley rigorous and is not by any
means an introduction to linear algebra. It is not a replacement of lectures,
discussions, or homework, but it should be a good enough refresher to pre-
pare you for exams as a high level overview of the course. Have fun :)

Contents

1 Linear Algebra 4
1.1 Vectors 4
1.1.1 Basics e 4
1.1.2 Scalar Product, Norms, and Angles 5
1.1.3 ProjectiononalLine 7
1.1.4 Orthogonalization and the Gram-Schmidt Procedure . 7
1.1.5 Linear Functions and Maps 9
1.2 Matrices 10
1.2.1 Basics e 10
1.2.2 Matrix Products 10
1.2.3 Special Matrices 11
1.2.4 The QR Decomposition of Matrices 12
1.2.5 Matrix Inverses 13
1.2.6 Matrix Norms. 13
1.3 The Fundamental Theorem of Linear Algebra 15
1.4 Least Squares 16
1.5 Eigenvalue Decomposition for Symmetric Matrices 17
1.5.1 Sample Covariance Matrices 19
1.5.2 Principal Component Analysis 19
1.6 Singular Value Decomposition 20
2 Convex Models 22
2.1 Convex Sets 22
2.2 Convex Functions 22
2.3 Convex Problems 25
2.4 Linear Optimization 26
2.4.1 Minimizing Polyhedra 27
2.5 Convex Quadratic Programs 28
2.5.1 Unconstrained Minimization of Linear Functions . . . 29

2.5.2 Unconstrained Minimization of Convex Quadratic Func-
tions 29

2.5.3 Quadratic Minimization under Linear Equality Con-

straints Lo oL 29
2.5.4 Linear-Quadratic Control 30
2.6 Second Order Cones 30
2.7 Robust Optimization 33
2.7.1 Robust Single Inequality 33
2.7.2 Robust Least Squares 36

3 Duality 37

3.1 Weak Duality 37
3.1.1 Dual Function 37
3.1.2 Dual Problem 38

3.2 Strong Duality oL 39
3.2.1 Slater Condition for Strong Duality 39

3.3 Descent Methods 41
3.3.1 Gradient Descent 42

1 Linear Algebra

1.1 Vectors

A vector is a collection of numbers arranged in a column or a row, and can
be thought of as point in space, or as providing a direction. The scalar
product gives us information about the length of a vector, and we can also
use it to find information about the angle between two vectors. In this way,
we can think of vectors as linear functions.

1.1.1 Basics

Say we have a collection of n numbers in R, labeled z1, ..., x,,. We can rep-
resent these numbers as a single point in n-dimensional space. We usually
write all the information about this point (the n numbers) in a column:
x1
. T
x=|:|= [xl xn]

Tn

Independence

A set of vectors {x1,...,x,} € R" is independent if and only if the
following condition:

n
{AeR”:ZAixizo} = A=0

i=1

This means that no vector in that set can be expressed as a linear
combination of the other vectors in that set.

A subspace of R" is a subset that is closed under addition and scalar mul-
tiplication. All subspaces must pass through the origin (since 0 is a scalar).
An important property in linear algebra (proved later on) is that a subspace
S can be represented as the span of a set of vectors {x1,...,x,},x; € R™.
In other words, it is of the form

S = span(Xy, ..., Xp) = {Z AiX; A€ Rm}

i=1

An affine set is a translated subspace. It is a subspace that has been
shifted so that it no longer necessarily passes through the origin. We can

define an affine set A based on our definition for a subspace:

A:{XQ+Z)\iXi:)\ERm}

=1

In shorthand notation, we can simply write this as A = xg + S.

A basis in R" is a set of n independent vectors. If the set of vectors uy, ..., u,
form a basis, we can describe any vector in R™ as a linear combination of
the basis vectors, where x = »_ A\;ju;. The standard basis in R” consists
of vectors eq, ..., e, where e; has 1 as its ith element and 0 everywhere else.

The basis of a subspace is any independent set of vectors whose span is
S. The number of vectors in the basis is independent of the choice of basis
itself. For example, we only need 2 vectors to define an origin-containing
plane in R3. The number of vectors we need to define a subspace is the
dimension of S. We can define the dimension of an affine space in much
the same way, since it’s just a translated subspace.

1.1.2 Scalar Product, Norms, and Angles
Scalar Product

The scalar product, inner product, or dot product between two
vectors x and y is a scalar x 'y and is defined as x 'y = > 2;1;,. We
also denote the scalar product as (x,y). Two vectors are orthogonal
if (x,y) = 0.

For the purposes of this course, we largely focus on 3 vector norms for
vectors in R"™.

Norms

1. ¢ Norm: Also known as the Euclidian Norm, denoted ||x||2,
the ¢ norm defined as

Ixllz =4/ 2 = VxTx,

correponds to the traditional straight-line definition of distance.
The set of points with equal /5 norms in 2 dimensions is a cir-
cle, in 3 dimensions is a sphere, and in higher dimensions is a
hypersphere.

2. ¢1 Norm: Denoted as ||x]|1, and defined as

Il = 3 Jail,

the ¢5 norm corresponds to the distance traveled on a rectan-
gular grid from one point to another.

3. oo Norm: Also called the supremum norm and defined as
[xl[oc = max{a;},

the /o norm can be thought of as the maximum distance moved
in a particular direction.

Cauchy-Schwarz Inequality binds the scalar products of two vectors in
terms of their Euclidian norms. The proof for this inequality is widely cov-
ered in other courses such as EE16A, and Math54 and will not be reproduced
here.

Cauchy-Schwarz

For any two vectors x,y € R,
T
x'y < x|z - lyll2-
The only time this inequality is an equality is if the two vectors are collinear.

Another definition of the scalar product is that x "y = ||x||2||y||2 cos #. This
has also been extensively covered in EE16A, Math54, and Math53, but we
can easily use Cauchy-Schwarz to show that this is valid. The angle between
two vectors is incredibly useful for determining the similarity or closeness of

two vectors.

1.1.3 Projection on a Line

Define a line {x¢ + tu : ¢t € R} where u € R” is the direction of the line.
Then define the projection of x onto the line is the vector z on the line such
that the 2 norm between x and z is minimized (i.e. we use the previous
definition of “closeness” to find the vector on the line that is “closest” to x):

mtin |x —x0 — tul|2

This problem is part of the class of optimization problems known as least
squares.

We now want to find a closed-form expression for this problem. We
can expand the objective function into

(t—u'(x—x))? +ec

The optimal ¢ is then
f=u'(x—xp).

We can then get z = xg + tu = xg + u' (x — xo)u. If |jullz # 1, we can
normalize this result to get the standard projection:
u' (x — xp)

Z = Xq +
[[all2

This allows us to generalize the scalar product and say that the scalar prod-
uct u' x is the component of x along the normalized direction u/||ul|2. Un-
derstand why this makes sense; if the algebra is troublesome, it’s helpful to
try and prove some of the key principles here yourself to convince yourself
that the math is correct.

1.1.4 Orthogonalization and the Gram-Schmidt Procedure
Orthonormal
A basis (u;)?; is orthogonal if u] u;z; = 0. If |u;|2 = 1 then it is

(more strongly defined as) orthonormal.

Orthogonalization refers to the procedure of finding {qy, ...,q,} € R"™ from
a given {aj,...,ar} € R” such that S := span{ay,...,a;}) = {qi,...,q,} for

r = dim S, and {qi,...,q,} obeys the properties above, i.e. q forms an or-
thonormal basis for a.

Consider a simple example: project a along the line L(q) = {tq : t € R}
where ||q||2 = 1. The projection of a onto L is then simply q = (q'a)q.
Note that we can write a as the sum of two vectors: (a —a) and a. Note
that these two vectors are orthogonal (take the scalar product to see why).
In other words,

a=(a—a)+a=(a—(q'a)q)+(q'a)q,(a—(q'a)q) L (q a)q.

Interpret this as removing the component of a along q.

The Gram-Schmidt Procedure is a famous orthogonalization algorithm.
We orthogonalize each vector with respect to the previous one and then
normalize the result.

For Independent Vectors:
procedure gram-schmidt():
Set q; = a1
Normalize: Set qi; = q1/|qll2
Remove component of q; in as: Set qo =as — (qlTag)ql
continue

In the case when some vectors are dependent, we simply skip over the process
for any q; = 0.

Hyperplanes

A hyperplane is a set described by an equality, i.e. H = {x: a'x=
b}, with appropriate assumptions (i.e. a # 0,a € R™). If b = 0,
then x is simply the set orthogonal to a. If b # 0, then we are
referring to the same plane translated in the direction of a. Note that
by definition, if xg € # and x € H thena'xg—a'x =b —b =0,
ie. H={x:a'(xg—x) =0}

Hyperplanes are useful because they have dimension n — 1 (proof omitted)
and therefore separate the space into two regions (called half-spaces). We
can then get information about the space based on what points lie on what
side of the hyperplane. X = ba is the projection of the origin onto 4. In

other words, since H is orthogonal to a, the vector from the origin to H that
minimizes the Euclidian norm is ba.

Half-Spaces

A half-space is defined by single equality that tells us which side
of the hyperplane we are on. It is a space of the form H = {x :
alx > b}. The angle between x — x¢ and a is acute, where xg is the
projection of the origin onto the boundary of the half-space.

1.1.5 Linear Functions and Maps

Linear Functions

Linear functions preserve the additive and scaling qualities of their
arguments. Affine functions are ”linear functions plus a constant.”
More formally, a function f : R™ — R is linear if and only if

VxeR", aeR —

flax) = af(x)vx1,x3 € R”, f(x1 +x2) = f(x1) + f(x2)-
A function is affine if and only if f : R” — R = f(x)— f(0) is linear. A

function f is also only affine if it can be expressed as f(x) = a'x+b.

The gradient of an affine function f at a point x (Vf(x)) is a vector of
first derivatives with respect to 1, ..., Ty.

Vix)=a'x+b=a.

Say we want to approximate a non-linear function with a linear or affine
one. Consider the one dimensional case, with f : R +— R. Then we can
evaluate a point x near xg as

f(x) ~1(x) :== f(x0) + f'(x — x0)

For a multidimensional case, we consider a very similar construction. We
must approximate f through an affine function [, meaning [must be of the
form a'x +b. We then get the following approximation:

f(x) = U(x) := f(x0) + Vf(x0) " (x — o)

1.2 Matrices

Matrices are collections of vectors of same size, organized in a rectangular
array. Via the matrix-vector product, we can interpret matrices as linear
maps (vector-valued functions), which act from an input space to an output
space, and preserve addition and scaling of the inputs.

1.2.1 Basics

Matrices are horizontally concatenated column vectors of equal dimension.
If we have a set of column vectors ay, ..., a,, € R™, we can create the m x n
matrix A = [al an]. We transpose a matrix by inverting the row and
column of an element —i.e. A;; becomes Aj; in AT. We can also represent
a matrix as a vertical stack of transposed column vectors.

1.2.2 Matrix Products
The Matrix-Vector Product

The matrix-vector product of an m X n matrix A and an n-vector
x, denoted Ax has definition

n
(AX)Z = ZAijxjai = 1, ey

j=1
T

n ap X
Ax = E T;a; = o
i=1 T

a,, X

Matrix-Matrix Products

We can extend the definition to matrix-matrix products. If A €
R™*" and B € R™*"™, then

n
(AB);; = Z Ay By;.

k=1
a/B
AB =[Ab; .. Ab,|= :
a, B

10

Matrix algebra generalizes to blocks (i.e. splitting up matrices into concate-
nated, smaller matrices). In this way [Al Ag] [Bl BQ]T =A1B1+A5Bs.
Note that if the transposes were in different orders we’d have a completely
different product (an outer product).

(A, A5 [B, BQ}:[AlBl AlBﬂ

AsB; AsB»

Trace

The trace of a square matrix A € R™ ", tr(A), is the sum of the
diagonal elements of the matrix.

tr(A) = tr(A)7, tr(AB) = tr(BA)

We can use the trace to define the scalar product between two matri-
ces.

(A,B)=tr(A'B)=tr(A'B)" =tr(BTA) = (B,A)

1.2.3 Special Matrices

Identity

The n x n identity matrix (often denoted I, or simply I, if context
allows), has ones on its diagonal and zeros elsewhere. It is square,
diagonal and symmetric. This matrix satisfies A - I, = A for every
matrix A with columns, and I, - B = B for every matrix B with n
rOWS.

Diagonal

Diagonal matrices are square matrices with A;; = 0 when ¢ # j. A
diagonal n x n matrix A can be denoted as A = diag(a), with a € R”
being the vector containing the elements on the diagonal.

11

Symmetric

A matrix is symmetric if A;; = Aj;. They will be covered in more
depth later.

Triangular

A matrix A € R™*" is upper triangular if A;; = 0 for i > j. A
matrix is lower triangular if its transpose is upper triangular.

Orthogonal

An orthogonal or unitary matrix is one whose columns form an
orthonormal basis. Using the properties of orthonormal vectors, we
see that this means that UUT = UTU = I. Orthogonal matrices
correspond to rotations or reflections across a specific direction. They
preserve length and angles (can be easily proved from the definition
of inner products).

Dyads

A matrix is a dyad if it is of the form A = uv'. Ax = (uv')
(v x)u. The output is always a scaling of u dependant on v. Dyads
can also be normalized (so that we can capture the scaling factor in
a single coefficient).

X =

1.2.4 The QR Decomposition of Matrices

The goal of QR decomposition is to factor a matrix as a product of two
matrices. It is extremely similar to the Gram-Schmidt procedure applied to
the columns of the matrix. Consider A € R™*", with n columns a; € R™.

First assume that the columns of A are linearly independent. Then each

step of the G-S procedure can be written as

a;= (3 qi)aqr + ... + (&, qi_1)qi_1 + |Gill2qii = 1,...,n

Now let 7j; = a, qj, 1 <j <i—1, and 7; = ||@s|2- Since each q; is unit
length and normalized, the matrix Q = [qi

12

qn] is unitary. Then the

QR decomposition of A is

11 T12 T1in
0 7o Ton
0 0 7rpn

where Q € R™*", where Q'Q =1, and R € R™ " is upper triangular.

1.2.5 Matrix Inverses

A square n x n is only invertible if it is full rank, i.e. all of its columns are
linearly independent. Equivalently, a matrix A is only invertible if |A| # 0.
For any invertible A, 3 B € R™*" : BA = AB = I,,. We denote B as
A~!. Using the QR decomposition of A, A~ = R7'Q'. Additionally,
(AB)"' =B 'A%

A matrix is full column rank if its columns are independent (m > n).
A matrix has full column rank iff 3B : BA = I where A = Q [Rl O}T.
Then B = [Rfl 0] Q'. We can also write

B=(ATA)!AT.

A matrix is full row rank if its rows are independent (m < n). A matrix has
full row rank iff 3B: AB=1. If A = [RT 0} Q' then B=Q [Rfl O]T.
We can also write

B=A"T(AAT)™L

1.2.6 Matrix Norms

A matrix A can induce a linear map via the matrix-vector product, i.e.
f:x+— Ax. Say, however that we have a noisy input vector (x + v). Then
our map will amplfy the error and leave us with an error in our output of
Av. We can quantify this error by capturing how ||Av|| varies in v. Since
scaling v scalse ||Av||, we can restrict ||v|| = 1.

13

Frobenius Norm

Let’s examine that the error vector can be any one of the standard
basis vectors. Then the average squared error is

1 — 1 —
n Z HAeng o Z Hai”%
i=1 i=1

Here, a; is the ith column of A. This quantity is equal to 2[|A||%,

where

m n

S a3 = fer(aTa)
i=1 j=1

|AllF =

Intuitively, the Frobenius norm || - ||z is a matrix-equivalent to the
2-norm, as it is the Euclidian norm of the vector x € R™" formed
with the coefficients of A. Computation of || - || is in O(nm).

Norms such as the LSV norm and peak norm are covered in the book, but
aren’t essential to know so I'm omitting them from these notes. Looking
over their definitions is still highly encouraged, however.

14

1.3 The Fundamental Theorem of Linear Algebra

The solution set to x € R” : Ax =y, A € R™*" y € R™ is (if it exists) an
affine subspace, i.e. of the form x = x¢ + L. We want to know if x exists at
all; and if it does, find xg and an orthonormal basis for L.

Range

The range or image of A € R™*" is a subset of R™. It describes all
the vectors that can be attained by multiplying A by any arbitrary
x. The range is equivalent to the column span of A.

R(A) :={Ax:x € R"}

The rank is the dimension of the range. The rank is capped by the
smallest dimension of A, i.e. rank(A) < min{m,n}. A is full rank
if rank(A) = min{m, n}.

Nullspace

Nullspace: The nullspace also known as the kernel of A € R™*"
is a subspace of R™. The nullspace is a measure of ambiguity in A.
If ze N(A), then A(x +2z) = Ax =y, so we cannot extract x from
y. In order for us to be able to completely determine x we require
N(A) = {0}, known as the singleton.

N(A):={xeR": Ax =0}

The nullity of A is the dimension of of the nullspace.

A is full row rank or onto if R(A) = R™. An equivalent condition is that
AAT is invertible. A is full column rank or one-to-one if N'(A) = {0}.
An equivalent condition is that AT A is invertible.

The Rank-Nullity Theorem

The rank and nullity of A € R™*"™ sum to its column dimension n, i.e.
the nullity of A € R"™*" is n — r where r = rank(A). Equivalently,
rank(A) + dim(N(A)) = n.

15

The Fundamental Theorem of Linear Algebra

The range of a matrix is the orthogonal complement of the nullspace
of its transpose. That is, for A € R™*™ the following holds:

NA)BR(AT) =R"

NAT) @ R(A) =R"

1.4 Least Squares
The ordinary least squares (OLS) problem is defined as
min [[Ax — yl|3

where A € R™*" y € R™. Intuitively, the least squares problem describes
how to fit a function to a set of data so that we minimize the error between
our predicted output Ax and the observed output y. We usually use least
squares where Ax =y has no direct feasible solution, and is instead used
to find the smallest § such that Ax =y + dy becomes feasible.

We can reduce the problem to a minimization problem on the rows of A,
i.e. rewrite it as

This expression makes it expressly clear that we are determining how to fit
each component of y with its corresponding input a; using x as the coeffi-
cients of the linear map.

When A is full rank, the solution to the problem is unique. The global
minimizer of f = ||Ax — y||3 is where Vxf = 0, i.e. where
Vx(Ax—y) (Ax—y) =0
Solving for x gives us the standard closed form OLS solution,
x=(ATA)1ATy.

In the case where A is not full rank, we can express any single solution xg
as xg+/MN(A) for reasons mentioned in the previous section. Anything more
in depth than that is beyond the scope of this course, and is omitted here.
It is sometimes acceptable to leave the solution as (AT A)x = ATy.

16

1.5 Eigenvalue Decomposition for Symmetric Matrices

A matrix A is symmetric if A € R"*™ and AT = A. The set of symmetric

matrices is denoted as
Sn C RTLXTL

Quadratic Functions
A function ¢q : R™ — R is quadratic if
n n n
q(x) = Z Z Ajixix; + 2 Z b;x; + ¢
i=1 j=1 i=1
where A € R™" b € R", and ¢ € R. When b =0, ¢ = 0 we say that

q is in quadratic form. The Hessian V2¢(x) is constant.

There is a link between symmetric matrices and quadratic functions. In
fact, we can see that we can decompose our above definition of g into the
product of vectors and matrices:

o= [8 Y- waeeaes

where A € S”, b € R", and ¢ € R.

The scalar A € R is an eigenvalue of A if:
JueR"#0: Au= Au.

Here u is an eigenvector of A. If the eigenvector is mormalized, i.e.
ul| =1, then u’ Au = Au’u = \. The eigenvalues of A are characterized
by the equation

det(\I—A) =0

The function ¢ — p(t) := det(A\I — A) is an n-degree polynomial called
the characteristic polynomial. This is a concept that’s covered pretty
heavily in EE16A, EE16B, and Mathb4.

17

Spectral Theorem

Any symmetric matrix can be decomposed into the following sym-
metric eigenvalue decomposition:

VA € S" A = inuiuj = UAU' A =diag(A1, ..., \n), UT =U!
=1

More simply, any symmetric matrix can be decomposed into the product
of a unitary matrix, its eigenvalue matrix, and the transpose of the first
unitary matrix. Calculating A is in O(n?).

Rayleigh Quotients

We can find A\pin and Apax of a symmetric matrix:
Amin(A) = min{x ' Ax : x'x = 1}, Amax(A) = max{x"Ax: x'x = 1}

We call this form the variational form, because this is a way to de-
scribe the eigenvalues as the solutions to optimization problems (his-
torically referred to as variational problems) of quadratic functions
over the Euclidian R-ball. In other words, we can rewrite these values
as the minimum and maximum values of the Rayleigh Quotient,

xT Ax

x'x

Positive Semi-Definite Matrices

The definition of a positive semi-definite (PSD, A > 0) matrix is
as follows:

(AeRV"CS") >0 < x' Ax > 0vx € R"

A matrix is positive definite (PD, A > 0) if x" Ax = 0 iff x = 0.
A is only positive semidefinite if all of the eigenvalues of A are nonnegative.
By definition, whether or not A is PSD depends only on the eigenvalues of

A, not on the eigenvectors. In fact, for all B with n rows, BT AB is PSD
so long as A is.

18

Ellipsoids

An ellipsoid is any affine transform of the unit ball for the Euclidian

norm:
e={x+Lz:|z| =1}

Here, L is an invertible square matrix. Rearranging terms, we get

e={x: L7} x—%)|l2 <1} = {x: (x—%x"A 7 (x—%) <1},A=LL" ~ 0

1.5.1 Sample Covariance Matrices

For z € R™, the variance ¢ shows how much the data varies around the

mean z, i.e.
1 & 1 & 9
= Zzi,Var(z) = Z(ZZ —z)
i=1 i=1

Consider a data matrix X € R™*™_ with m data points represented by
column vectors. To describe how much variance exists in the data set, we
project along u € R™ to get the row vector z = [uTxl uTxm] =u'X.
Then using our definitions above,

1 m
A Ts T
Z=1u X, Va = — —
, Var(z) — g x; — %)’ =u' Zu
k=1

Here, 3 is the PSD sample covariance matrix, defined as

1 — .

— E (xp — X)(x — X)

m

k=1

1.5.2 Principal Component Analysis

When we have a set of data that is represented in an extremeley high num-
ber of dimensions, it sometimes becomes beneficial to try and reduce the
number of dimensions our data is represented in. In order to preserve the
differences in our data points, we try to project along the directions of max-
imum variance. In that way, the variance maximization problem is
to find the solution to

max u' Su
u:||ul|=1

19

Here 3 is the sample covariance matrix described in the previous section.
Note the similarity between this problem and the previously mentioned
Rayleigh quotient — solving this problem is the same as solving for the largest
eigenvalue of 3.

The goal of principal component analaysis, or PCA, is to project our
data onto the hyperplane orthogonal to the directions that correspond to the
maximum variance between our data points. These directions, or principal
components, are simply the eigenvectors of our covariance matrix. For
example, the projection onto the first two principal components is x — Px,
where P = [ul ug]T is composed of the first two eigenvectors of X corre-
sponding to the two largest eigenvalues of X.

The total variance of our data is tr(X) = tr(UAUT) = tr(U'UA) =
tr(A) = >"" | A\p. The variance of our projected data is then just Zle Ak,
where k is the number of principal components we use for our projection.
The ratio of projected variance to total variance tells us how much of the
variance we're capturing in our projection.

1.6 Singular Value Decomposition

Any rank-one matrix A € R™*" can be written as A = ouv' for u € R™,
v € R", ¢ > 0. We can turn this into a general statement for a rank r
matrix by treating it as the sum of r rank-one matrices, i.e.

r
A= E O'illiv;r
=1

Here, each wu; is mutually orthogonal, and each v; is mutually orthogonal.
The values of ¢ are the singular values of A.

20

SVD Theorem

The following result applies to any matrix A and helps define the
map x — Ax:
An arbitrary matrix A in R™*"™ admits a decomposition of the form

A=Y o] —USVT .= (>0)
1=1

where U € R™*™ V € R™ "™ are both orthogonal matrices, and the
matrix 3 is diagonal:
¥ = diag(o1,...,0.)

where the positive numbers o7 > ... > o, > 0 are unique, and are
called the singular values of A.

The number r < min{m,n} is equal to the rank of A, and the triplet
(U,X,V) is called a singular value decomposition (SVD) of A. The first
r columns of U: w;,i = 1,...,7 (resp. V : v, i =1,...,r) are called left
(resp. right) singular vectors of A, and satisfy

AV,‘ = o;U;, ATui = 0V, 1= 1,...,7"

Computing the SVD of a matrix is on the order of O(mn min{m,n})

M=UX-V*

21

2 Convex Models

Recall that we were able to use linear algebra to easily solve ordinary least-
squares problems. We can apply this approach in an iterative fashion in
order to minimize any function that is bowl-shaped, or convex.

2.1 Convex Sets

A set C C R" is convex if and only if it contains the entire line segment
between any two points in C,

Vx1,x0 €C, VA€ [0,1] : Ax1+(1—N)x2€C

By this definition, subspaces and affine sets (i.e.“flat” planes) are convex
sets, since they contain the entire line between two points, not just the
line segment. A set is a convex cone if Vx € C, YVa € R, ax € C. The
intersection of family of convex sets is convex, and if a map f : R™ — R™ is
affine and C is convex, then

f(€) :={fx):xeC}.

One of the most important tools in convex optimization is our ability to
draw a line between two convex sets.

Separating Hyperplane Theorem

If C C R" is convex and non-empty, then for any xg at the boundary
of C, there exists a supporting hyperplane to C at xg, meaning that
there exists a € R”, a # 0 such that a' (x — xg) <0Vx € C.

Additionally, this means that if C € R™ and D C R" are non-
intersecting convex sets, there exists a separating hyperplane;
that is,a € R”, a# 0and b€ R, b# 0 such thata'x <bVx €C
and a'x > b Vx € D.

2.2 Convex Functions

The domain of a function f : R™ +— R is a set domf C R" where [is
well-defined.
domf :={x € R": —00 < f(z) < o0}

A function f is a convex function if

22

1. domf is convex.
2. ¥x,y € domf, V0 € [0,1] : f(Ox+(1-0)y) < 0f(x)+(1-6)f(y)

A function where —f is convex is called a concave function.

Note that the fact that domf is convex is essential to this definition, and
therefore the domain on which a function is defined is important. For ex-
ample, say we have the funciont f : R — R, f(x) = 1/z. If we define
f(z) =1/ for x > 0 and f(x) = 400 for z <0, then f(x) is convex since
its domain is R, a convex set. However, if we define f(z) on the domain
R\{0}, f would not be a convex function since the set R\{0} is not convex.

Alternate Characterizations of Convexity

1. Epigraph: A function f : R™ — R is convex if and only if its
epigraph is convex. The epigraph of a function can intuitively
be thought of as the space above the boundary of a function;
for the function f(z) = 22, epif = {(x,y) : y > 2?}. More
formally,

epif = {(z,1) : t > f(z)}

2. First Order Condition: If f is differentiable (domf is open
and the gradient is well-defined on the domain) then f is convex
if and only if

Vx,y : f(y) > f(x)+ V) (y — %)

This can be interpreted intuitively as saying that f is convex if
f is always bounded below by one of its tangent lines.

3. Restriction to a Line: The function f is convex if and only
if its restriction to any line is convex. This means that for any
xp € R" and any v € R, f(zo + tv) is convex.

4. Second Order Condition: If f is twice differentiable, then
it is convex if and only if its Hessian V2f = 0 everywhere on
dom f. This is the common “calculus” definition of convexity.

23

Operations that Preserve Convexity

1. Composition with an Affine Function: If A € R™*" b e
R™ and f : R™ — R is convex, then the function g : R”
R, g(x) = f(Ax+b) is also convex over domyg := {x : Ax+b €
domf}.

2. Pointwise Maximum: Let (fy)ac4 is a family of convex func-
tions, then

f(@) = max fo ()

acA

is convex. This is one of the most important ways of proving
convexity. This follows from the assertion that the intersection
of the epigraphs of convex functions is convex. Intuitively, this
means that the set of all points that form a “least upper bound”
for all the functions in (f,) is convex.

3. Nonnegative Weighted Sum: The nonnegative weighted
sum of convex functions is convex.

Yw € RﬁrardA, Z We fa
«

is convex if each element of {f, : & € A} is convex.

4. Composition with Monotone Convex Function: Compo-
sitions with functions generally do not preserve convexity. How-
ever, if f = hog with g convex and h monotonically increasing,
then f is convex.

The dual norm is of the form

X sup y'x
yilyll<i

This function is convex because linear functions are by definition convex
(and concave) on their entire domain. Intuitively, think of the dual norm as
taking a linear map fy = y 'x and seeing how “big” it is compared to x.

24

2.3 Convex Problems

An optimization problem in standard form
min fo(x): fi(x) <0 i=1,...,m
X
hi(X):O i:1,...,p

is convex if
1. The objective function fj is convex.

2. The functions defining the inequality constraints f;, 1 =1,...,m
are convex.

3. The functions defining the equality constraints h;, ¢ = 1,...,p
are affine.

Optimality Theorem

For convex problems, any locally optimal point is globally optimal.
The optimal set is convex.

We can rewrite our optimization problem as mingex fo(x) where X
is the feasible set. From our first order condition of convex functions,
we know that

fo(y) = fo(x) + Vo(x) " (y —x).
Then x is optimal if and only if

XEX, Vy e X:Vf(x) (y —x) >0

If V fo(x) is nonzero, it defines a supporting hyperplane to X at x. When
the problem is unconstrained, we find our optimum at V fp(x) = 0.

We say that a constraint is active at the optimum x* € X if f;(x*) = 0 and
that a constraint is inactive if f;(x*) < 0.

There are also cases when we want to maximize a convex function over
a set S. This is a difficult problem! We can say that this is equivalent to
maximizing over the convex hull of the set. For any § C R" and any
convex function f: R"™ — R, we have

R) = B T

In other words, instead of having to consider every point in the set, we
can simply find the maximum at each vertex of the convex hull. However,

25

finding the convex hull remains a computationally intensive problem. For
more study on this problem and this class of problems, make sure to check
out CS170.

2.4 Linear Optimization

A linear program is an optimization problem where all functions involved
are affine. The feasible set is a polyhedron, the intersection of a set of
half spaces. A polyhedral function is one whose epigraph is a polyhe-
dron. These functions include sums of maxima of affine functions, and can
be solved through linear programming.

Recall that a half-space is defined by a single affine inequality, i.e.
H={x:a'x <b}

Now we can also say that a half space is a convex set bounded by a hyper-
plane. A hyperplane splits the entire space in half.

Hyperplanes correspond to functional level sets. In this way, the half-
space defined by a hyperplane is is a sub-level set of a linear function. If
b >0, 0 is in the half-space (i.e. a’(0) < b).

A polyhedron is a set described by a finite number of affine functions,
ie.
'P:{x:a;-rxgbi,i: 1,...,m}

where a; € R”, b; € R. We can then express the polyhedron as the inter-
section of finitely many half spaces, i.e.

P:ﬂ{x:ajxgbi}
i=1

Geometrically, a polyhedron is a convex set with flat sides where each side
is a hyperplane. The vectors a point away from the interior of the set.

Equality constraints are also allowed in the definition of a polyhedron; the

set then becomes
P={x:Ax<b, Cx=d}

26

Standard Form

The standard form of a linear program is
min fo(x) : fi(x) <0 i=1,...,m
X

Here we can assume that fj is linear and f; is affine. Each constraint
in an LP is affine in x. Each constraint tell us that x lies in a half-
space; all the constraints together tell us that x exists in the interior
of a polyhedron. If a function is affine, we know it is of the form
f(x) =a’x — b. We can then rewrite the linear program as

minec'x: Ax<b i=1,...,m
X

Conic Form

A function that can be expressed in the form

minc' x: Ax=b i=1,....,m x>0
X

is in conic form. Every LP can be expressed in conic form (as
can every QP). Here, instead of having a sign constraint x > 0 we
represent X as x € K, where K is a convex cone.

2.4.1 Minimizing Polyhedra

A function is polyhedral if its epigraph is a polyhedron. For a more formal
definition, f : R™ +— R is polyhedral iff

3C e R™" L d e R™ : epi(f) = {(x,t) e R"™ : ¢t > f(x)}
— epi(f) = {(x,t) eR™ . C m < d}

Example: Conversion of o, Norm to LP:
Objective: Write the following minimization problem as a linear program:

min ||Ax — b|oc.
X

We can use the above epigraph definition for this LP, substitute the objective
with the variable ¢ and then constrain the objective. The new program

27

becomes
mtint . max|a; x — b;j| <t Vie[l,m]
@

which is then equivalent to

mtint calx—b <t —(ajx—b) <t Vie[l,m],

i
which is a linear program.

Example: Conversion of £; Norm to LP
Objective: Write the following minimization problem as a linear program:

min ||Ax — b||;.
X
Again, we can use the epigraph definition:

minZui ca/x—b; <w, —(a]x—b;) <u; Vie[l,m]
u

2.5 Convex Quadratic Programs

A quadratic program is one which whose objective can be written gener-

ically as
1
fo(x) = §XTHX +c'x+d,

where d € R, ¢ € R", and H is symmetric and in R™*". Note that at linear
function is a special case of a quadratic function, where H = 0. If H is not
symmetric, we can replace it with its symmetric part %(H +H").

A quadratic function is convex if its Hessian is positive semidefinite (V2 fo(x) =
0) — this means that every eigenvalue of H must be nonnegative.

The model defined as
. l T T
px = min fo(x) = 25X Hx+c'x: Ax<b, Cx=d
X

is a quadratic program, or QP. Such a program is convex if H is sym-
metric and PSD and non-convex otherwise.

28

2.5.1 Unconstrained Minimization of Linear Functions

We begin by considering a simple linear case, i.e. one where
p* =min fo(z) =c ' x+d
X

Note that if ¢ # 0 then the program will have an unbounded minimum,
i.e. if ¢ # 0 then p* = —oo. This is because we can let x = —ac for any large
lal. We then get fo(x) = —al|c||3 which we can arbitrarily drive towards
—o00. If ¢ = 0 then we get the minimum as px = d.

2.5.2 Unconstrained Minimization of Convex Quadratic Func-
tions

Consider the convex QP:
Pt = m}in fo(x) =x"Hx+c'x+d.

If H > 0, i.e. H is positive definite, then we can rewrite this
f(a) = (x —x0) TH(x — x0) + @ > a,

where xg = —H lc and a = d — XS—HXU =d—c'H lc. The unique mini-
mizer is x* = xg.

If H is only positive semi-definite, and ¢ € R(H), then any xo : Hxg+c¢ =0
is optimal. The set of solutions is then

{(—-H'+¢, (e N(H)).

If H is only positive semi-definite and ¢ ¢ R(H), then the function is un-
bounded below. By the FLTA, we can express c as any ¢ = —Hxg + r
for some xg,r # 0 € R", Hr = 0. If we let x(¢) = xo — tr, then evaluat-
ing f(x(t)) = B —t(r'r) for a constant 3. limy_,o f(x(t)) = —o0, so the
function is unbounded below.

2.5.3 Quadratic Minimization under Linear Equality Constraints

We can convert a quadratic program constrained by linear equalities into an
unconstrained version. Take a quadratic program of the form

p* = min fy(x) : Ax=Db.

29

Parameterize all x, with Ax = b as x = X + Nz, where X is one solution
of Ax = b, N is a columnwise basis for N'(A), and z is a vector of free
variables. We then form the unconstrained minimization problem as

1 o _
p* = minyy(z) = izTHz +c'z+d,
z

_ 1
H=N'HN, c=N'"(c+HX), d=d+c'x+ EXTHX

2.5.4 Linear-Quadratic Control

We want to figure out what sequence of inputs we should be feeding a system
so that we can reach a target state xy; at some time 7" > t3. We can pose
this problem as a quadratic program:

T
min Ix(T) — 2|3+) l[u(®)l3
(KO (1) ? t;o ’

t—1
st x(t) = AFx(to) + > AT IBu(i), t € [t, T).

1=to

The optimal u* can be written as a linear function of the state x, hence the
term linear-quadratic.

2.6 Second Order Cones

Second-order cone programming (SOCP) generalizes linear and quadratic
programs to allow for affine combinations of variables constrained within
a special convex set, the second-order cone. Linear programs and con-
vex quadratic programs are special cases of second-order cone programs.
SOCPs are especially useful in problems concerning geometry, as well as ap-
proaches to linear optimization that involve random uncertainty in the data.

In R3, the second-order cone is the set of vectors (x1, x2,t) where \/x3 + x3 <
t. Horizontal slices of the cone at level @ > 0 are disks of radius «. In an
arbitrary dimension, an n + 1 dimension SOC is

Kn={(x,t),xeR" teR:|x]2 <t}
The rotated second-order cone in R™*2 is the set

Kr={(x,y,2),x eR" yeR,zeR:x"x < 2yzy >0,z >0}

30

The rotated second-order cone in R"*2 is actually just a linear transform (a
rotation in this case) of the standard SOC in R™*2 since

T .

The above result can be translated to mean that (x,y,z) € K/ if and only
if (w,t) € K, where w = (x, (y — 2)/v2), t = (y + 2)/v/2. Constraints of
the form x ' x < 2yz are referred to as hyperbolic constraints.

1x]13 < 2yz,y > 0,2 >0 = H

Constraints for second-order cones take the form of ||y||2 < ¢, meaning that
for some variable x, the constraint (y,t) € K, = ||y|l2 <t for y,t affine
transforms of x. Simply put, the constraints must be in the form

|Ax +b|| <c'x+d.

We can write the quadratic constraint x' Qx + ¢ x < t as the conic

Q1/2 T
H[tc Tx—1/2 <t c x+1/2.

31

Second Order Cone Programs

A second-order cone program is a convex optimization problem with

a linear objective and SOC constraints. They are in the general form
of
p*=minc'x : |[Ax+billz <c!x+d; Viell,m]
X

We can cast the standard form LP
Ir;inch ca x<b; Vie[l,m]
as the SOCP:
mxinch ||Cix 4 dil]2 < b —a x Vi € [1,m]
where C; =0 and d; = 0.
We can cast the QP
m)inxTQx+ c'x :a'x<b; Vie[l,m]

with Q = Q" > 0 as the SOCP

1/2
minch—i-y : HFQ X]
X,y y—1

<y+1,a/x<b Viel[l,m].
2

The convex quadratically constrained quadratic program
(QCQP) with standard form

minx' Qox+ajx : x' Q;x+a]x <b; Vie[l,m]
X

with Q; = Q;-r > 0 can be cast as the SOCP

1/2
minc' x+y : 2Q," X <y+1,
X,y y—1)
1/2
‘[b- 2QiTx] <b —a/x+1 Vie[l,m]
i —a; x— 1)

32

2.7 Robust Optimization

A lot of times, we work in an ideal setting, where we can have confidence
in our data. However, in the real world this is rarely the case. Data usually
has a degree of uncertainty. Estimation errors can affect the problem
parameters, while implementation errors impact the final decision. Un-
certainty can lead to highly unstable solutions or degraded performance. We
can take our nominal problem

min fo(x) : fi(x) <0 Vi€ [1,m]
X
and transform it into its robust counterpart,

minm%(fo(x, u) : Yuel, fi(x,u) <0 Viel[l,m]
X ue

Essentially, we are now making our objective and constraints dependent on
a second vector u representing our uncertainty, where u is constrained to
a set U. This problem also convex, and gets this convexity from the nomi-
nal. This problem is generally pretty complex, but under certain conditions
relaxations exist.

Robust Linear Programming

Take the nominal problem

minc'x : a] x <b; Vi€ [1,m].
X
Assume that c is drawn from a set &/ C R™. The robust program is
then
minmaxc'x : a, x < b; i € [1,m].
X ceU

This method of robustness can be extended for uncertainty affecting
the coefficient matrix A or the right-hand side vector b.

2.7.1 Robust Single Inequality

Here we examine the robust variant of a single inequality constraint, namely
that
YaelU, a'x <b

Here we let U take one of three forms — the “scenario” case, where U is
a finite set of scenarios or cases; the “box” case; or the case where U is a

33

sphere or ellipsoid. Note that the above inequality can be written as

b

> max a'x.
acl

We begin with the “scenario” case. This assumes that we only know that a
lies in a finite subset of R™, U = {a(l)7 e a(K)} where each al®) represents a
“scenario.” We then have

max aT
acl

X = Imax a(
1<k<K

k)TX

In the box case, we say that we only know that the coefficient vector a; lies
within a “box”, a hyperrectangle in R™. In the simplest case, this means

that

U={a:lla— 4w <p)={atpu:ufe< 1}

Here p represents the size of the uncertainty and a is the nominal value of
the coefficient vector. We then have

maxa

aclU

Tx—éTx—l-p-(

4
a3

2

—

T

max u x) =a'x+ plx/1.

u:[|uflee <1

\
\

In the case of spherical uncertainty, we assume that a; is only known to lie
in a sphere. Then we have

U={a:|a-alls <p}={a+puulz <1}

Here p > 0 measures uncertainty and a is the nominal coefficient vector.
Then we have

maxa'x =4 ' x+p-(max u'x)=a'x+p|x|.
acld u:|juf|2<1

We also have ellipsoidal uncertainty, where we know a; to be in an ellipse,
ie.

U={a:(a—a)'Pl(a—a)<1}={a=a+Ru:|ufs <1}
since P = 0 and therefore P = RTR. We then have

maxa'x =a'x+ max (Ru)'x=a'x+ |Ruls.
acU u:||uf|2<1

It can be difficult to visualize what exactly robust LP is trying to correct
for, so the following visualization is given:

35

In the above diagram, the red line represents the nominal solution. Note
that this implies that our data is inherently unstable; changing the direction
of our objective (changing c¢) could drastically change our optimum. How-
ever, the red point (which represents the solution to the robust problem)
will stay the same even if we perturb the direction of our objective slightly.
This is the advantage of robust programming.

2.7.2 Robust Least Squares

We now observe a robust version of the classic least squares optimization
problem. Beginning with the standard LS formulation

m}in |Ax —y|2, A € R™*" y € R™.

Now say that we only know that A exists within a certain distance of the
nominal matrix A, i.e.
[A—A[<p

(the norm above is the largest singular value norm, || - || = omax(-). An
equivalent case is to say that A = A+ A, where ||A|| < p where both A and
p represent uncertainty. We are then left with the robust least squares
problem,

min max |(A + A)x — y|f2.
X JAl<p

Think of this as minimizing x with the worst-case error A.Since the Euclid-
ian norm is convex, ||a + blj2 < |lalj2 + ||b||2 so therefore

I(A+ A)x — yll2 < |Ax — yll2 + [|Ax]|2

Additionally, ||Ax| < ||A]l - [Ix|l2 < p||x||2, meaning we now have a bound
on our objective of

max [[(A + A)x — yll2 < [|Ax — yll2 + pl|x]|2
AlI<p

The problem then becomes
min||Ax — yll2 + pllx]l.

which is just a regularized least squares problem that can be cast as the
SOCP
minu+ pv : |[Ax —ylls < u, [|x|]2 < v.

X,u,v

36

3 Duality

3.1 Weak Duality

Starting with any minimization problem (the primal), we can formulate a
maximization problem (the dual) that provides a lower bound for it. This
is known as weak duality. If the optimum value of the dual is the same as
the primal, we have strong duality.

Consider a standard form minimization problem, that is one of the form
p* =ming fo(x) fi(x) <0 i=1,...,m

Here p* is the primal problem. Here x € R™ are the primal variables, and
the optimum solution is the primal value.

Lagrange Function

Let f(x) = [fi(x) --- fm(x)]. The Lagrangian or Lagrange
function is £ : R” x R™ — R defined as

Lx,y) = fox)+ Y _vifi(x) = fo(x) +y' f(x)
i=1

3.1.1 Dual Function

Based on the Lagrangian, we can construct a new function composed of
dual variables that provides a lower bound to our original function. Fix
some y > 0 and note that x — £(x,y) is a penalized objective, meaning
that violating any of the primal constraints incurs a penalty. The further
we stray from the constraint, the bigger the penalty. If no constraints are
violated, then y ' f(x) < 0. Then

Vx feasible fo(x) > L(x,y).
We can now define the dual function
9(y) = min L(z,y) = min fo(z) +y ' f(2)

The definition of g(y) is a pointwise maximum, therefore g is concave. Com-
bining this with our original inequality tells us

Vx feasible fo(x) > g(y)

37

and minimizing over x gives us
Yy >0:p* > g(y)

3.1.2 Dual Problem

We aren’t just trying to find an arbitrary lower bound, however — we’re
looking for the largest lower bound; i.e. we’re trying to find

P> maxg(y)
The problem is then to find the best lower bound. This is the dual prob-
lem, where the optimal value is the dual value. Therefore the dual prob-
lem, a maximization problem with g concave, is a convex optimization prob-
lem itself.

Duality is a powerful tool, since we can bound any minimization prob-
lem (convex or otherwise) into a convex optimization problem. However,
the dual is not always necessarily easy to solve.

Example: The minimum distance to a polyhedron

The minimum distance to a polyhedron can be expressed by the function
p* = min %XTX : Ax < b. Its Lagrangian is £(x,y) = %xTeryT(Ax —b).
Then its dual is g(y) = mink = £(x,y) = mink ix'x+y ' (Ax —b). Using
calculus, we can solve and see that x* = —A Ty. Substituting this back gives
us g(y) = L(x*,y) = —3||ATy|3 — b"y. The dual problem then becomes

1
d* = _bT = AT 2
max y 2H yl2

Minimax and the Right Angle Property

The right angle property says that for f < 0 and y > 0, the angle
between —f,y € R’ is at most 90 degrees. This gives us a bound
for the feasible primal set, i.e. maxy>q y " f(x) is 0 for any feasible x
but +oo for a non-feasible x. Therefore p* = miny maxy>o L(x,y).
The minimax inequality states that for any function of two vector
variables £ : R” x R" — R and X C R",)Y C R™, we have

min max £(x > max min £(x
xEX yeY (x,y) 2 yEY XEX (x,y)

38

3.2 Strong Duality

When the primal and dual values coincide, we say that strong duality
holds. In general, strong duality does not hold, but under a certain set of
conditions it does. Here we explore those conditions.

3.2.1 Slater Condition for Strong Duality
Consider a convex constrained optimization problem in standard form:
p* ::mgnfo(x) tAx=Db, fi(x)<0,i=1,...,m
for affine inequality constraints (i.e. h;) A € RP*" b€ RP and f; : R" — R
are convex functions. Here we have the Lagrangian as
L:R"XR™ xR — R, L(x,\,v) = +ZAfZ T(Ax —b)

for the dual variables A\, v. The dual function is then

g\ v) = mmfo +Z)\ fi(x T(Ax —b)

= min fo(x Zm Z”(x>

i=1
The dual problem becomes

d* = A
ggﬁg(V)

We saw previously that weak duality implies that p* > d*. Strong duality
holds if p* = d*.

Slater’s Condition

Slater’s theorem provides a sufficient condition for strong duality, i.e.
strong duality holds if

1. The primal problem is convex.

2. It is strictly feasible, i.e. Jzg € R" : Axg = b, fi(x) <0, i =
1,....,m.

39

Intuitively, this means that the primal is convex and there is a point inside
the feasible set that is not on the border of the feasible set (i.e. there is a
point that is fully contained within the boundaries of the feasible set).

Sion’s Minimax Theorem

Let X be a compact convex subset of R” and) a convex subset of
R™. If f is a real valued continuous function on X x), with f(x,-)
continuous and concave on Y, x € X and f(-,y) continuous and
convex on X, y € Y, then

mln max T = Imax min T
yEY x€X f(y) xeX ymeyf(y)

If a problem satisfies strong duality, then for an optimal primal variable
x* and optimal dual variables A*, v* we have

F(x*) =g\ v") < folx +ZA*fz +th) < fo(x*)

Here the first inequality is an expression of the dual problem as a minimiza-
tion over x of the Langrangian, and the second inequality from the fact that

* is feasible. Every term in the sum is nonpositive, therefore each individ-
ual term in the sum must be 0 to satisfy the above. The implication is that
if the 7th constraint is strictly satisfied, the corresponding dual variable \;
must be 0. This is known as complementary slackness.

40

Karush-Kuhn-Tucker Conditions (KKT)
1. Primal Feasibility
2. Dual Feasibility
3. Complementary Slackness

4. Lagrangian Stationarity (every function involved is differen-
tiable, i.e.)

m p
Vo(x) +) NiVfi(x) + > viVhi(x) =0
i=1 i=1

These set of conditions are the Karush-Kuhn-Tucker conditions
(KKT) of optimality. If a convex problem satisfies Slater’s condition,
then the primal point is optimal if and only if (\,v) s.t. the KKT
conditions hold. Conversely, the conditions show strong duality and
an optimal (z, \,v).

3.3 Descent Methods

Here we discuss algorithms for finding an optimal point when traditional
methods are not easy/feasible. To be more precise, we aim to find a min-
imizing sequence x*) where x(*+1 = x(*) 4 () Ax(*) For convex prob-
lems, we focus on descent methods, meaning that we need f(z(*+1) <
f(x®)) except for optimal x(*). From our convexity definitions, we know
that V f(x*) T (x(1) —x(*)) gives us the aforementioned inequality, f(z*+1) <
f(x®). Therefore V f(x*))TAx*) < 0.

General descent methods follow the following set of steps:
Begin with x € dom(f).
1. Begin with a descent direction Ax.
2. Line Search determine a step size t > 0.
3. Update x:=x+ Ax.
Repeat until the descent direction is <e.

There are several methods for determining the step size ¢. In exact line

search, we determine
t =s>0 f(X + SAX)a

41

i.e. we determine ¢ based on minimizing f on the ray {x + tAx: ¢ > 0}.

Frequently we don’t try to find the exact minimizer of f — instead, we just
try to find a value that minimizes f enough. One popular method is known
as backtracking line search, depending on two constants « € (0,0.5) and

B e (0,1).

Begin with a given direction Ax.
Let t:=1.
while f(x+ Ax) > f(x) +atVf(x)"Ax, t = Bt.

3.3.1 Gradient Descent

One of the most natural methods of selecting Ax is to use the gradient of
f. Begin with x € dom(f).

1. Begin with a descent direction Ax = —Vf(x).

2.Check if this is <e¢€; if so, break.

3. Line Search determine a step size t > 0.

4. Update x :=x+ tAx.
Now say that we have the update equation xp11 = xp — NV f(xx) (note
that the two notations expressed thusfar are equivalent). We can write
Xptr1 = Axyp + b. Then the gradient descent algorithm will converge if
[Armas (A)] < 1.

A function f is L-Lipschitz if

1F(x) = f(¥)ll2 < Llx =yl

. This additionally implies that ||V f(x)|l2 < L.

Now let f : R™ — R be a convex, differentiable, L-Lipschitz function, with
{xi,...,xx} being the iterates of gradient descent. Then let x* be the opti-
mum point and ||x; — x*||2 < R. Then summing across all £ = 1,...,¢ gives

us ,
1 RL
- x| — f(x*) < —.
() s < 2
Then we choose the optimum step size of
R
n i NG

in order to minimize the convergence gap and maximize the convergence
rate.

42

