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0.1 Introduction

This document is an overview of EECS 126, Probability and Random Pro-
cesses, at UC Berkeley. These notes are largely based off of Introduction to
Probability by Dimitris P. Bertsekas and John N. Tsitsiklis, and lectures by
Shyam Parekh. This is not an introductory class to probability, and these
notes assume a basic understanding of probability from CS70, STAT134, or
similar. These are not a replacement for lectures, labs, or discussions, but
should solid enough for review!
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1 Sample Spaces and Probability

Probability is an attempt to discuss an uncertain situation. It’s not a con-
cept that’s uniformly or universally shared or understood, and we study
it in order to create a more concrete understanding of uncertainty. Some
people define probability as a frequency of occurrence, where we try to
examine the number of successful occurrences in a large number of trials.
We can also define it as an expression of subjective belief – what would
you say the probability is that you’ll do your laundry today? Here we aim
to construct a more well-defined notion of probability.

Sets

A set is a collection of objects (the elements of the set), denoted as

S = {x1, ..., xn}.

If there exists some mapping f : N 7→ S, we call the set countably infinite.
We can denote a set by the property it satisfies, i.e. S = {x|P (x)}. If the
set does not have elements which can be enumerated by the positive integers
(i.e. a continuous range) we call the set uncountable. The universal set is
denoted as Ω, and typically we are concerned with S ⊆ Ω.

The complement of S relative to Ω is the set {x ∈ Ω|x 6∈ S}. The union of
two sets is the set of elements which belong to either set or both sets (S∪T ),
and the intersection of two sets is the set of elements which belong to both
sets (S ∩T ). We have a general notation for the unions and intersections of
multiple sets.

∞⋃
n=1

Sn = S1 ∪ S2 ∪ . . . = {x|∃Sn ∈ S : x ∈ Sn}

∞⋂
n=1

Sn = S1 ∩ S2 ∩ . . . = {x|∀Sn ∈ S : x ∈ Sn}.

Two sets are disjoint if their intersection is empty. A collection of sets is
a partition of S if

⋃
Sn = S and

⋂
S = ∅. Two of the most important

properties of sets are given by DeMorgan’s Laws:
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DeMorgan’s Laws:(⋃
c

Sn

)c
=
⋂
n

Scn,

(⋂
n

Sn

)c
=
⋃
n

Scn.

1.1 Probabilistic Models

Probabilistic Models consist of a sample space Ω and a probability law that
assigns a probability P(A) to each event A that encodes our knowledge
about the “likelihood” of the elements in A. In the real world, we use ex-
periments (3 coin flips, 2 dice rolls, etc.) in order to produce exactly one
of the several possible outcomes. Elements in a sample space should be
mutually exclusive and also collectively exhaustive – they shouldn’t
overlap and together they should encompass every possible outcome.

Probability Axioms:

1. (Nonnegativity) P(A) ≥ 0 for every event A

2. (Additivity) If A and B are two disjoint events, then the probability
of their union satisfies

P(A ∪B) = P(A) ∪P(B).

More generally, for a sequence of disjoint events, P(
⋃
Ai) =

∑
PAi.

3. (Normalization) The probability of the entire sample space is 1, that
is P(Ω) = 1.

Properties of Probability Laws:
Consider a probability law and events A,B, and C.

1. If A ⊂ B, then P(A) ≤ P(B).

2. P(A ∪B) = P(A) + P(B)−P(A ∩B)

3. P(A ∪B) ≤ P(A) + P(B)

4. P(A ∪B ∪ C) = P(A) + P(Ac ∩B) + P(A∪ ∩Bc ∩ C)
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We can generalize property (c) in the following:

The Union Bound

P

(
n⋃
i=1

Ai

)
=

n∑
i=1

P(Ai).

1.2 Conditional Probability

Conditional probability gives us a way to reason about an experiment based
on partial information. More exactly, given an experiment, sample space,
and probability law, say that we know the outcome is part of some event B.
We want to know the likelihood that the outcome also belongs to a different
event A. In other words, we want to know the conditional probability
of A given B, or P(A | B). Conditional probabilities can be thought of as
a probability law on a new universe B, since the questions we’re asking
are entirely focused on B. We can logically reason that the probability of
A given B would be the probability of being in the intersection of A and B
divided by the total probability of B, or:

P(A|B) =
P(A ∩B)

P(B)
⇐⇒ P(A ∩B) = P(B)P(A|B).

Using this, we can visualize the probability of a large event A as the inter-
section of the probability of A1, ..., An, where Ai is one of many events that
need to happen for A to happen. This is expressed here:

Multiplication Rule

P

(
n⋂
i=1

Ai

)
= P(A1)

n∏
i=2

P

Ai| i−1⋂
j=1

Aj



1.3 Total Probability Theorem and Bayes’ Rule

Let A1, ..., An be a partition of Ω, i.e. every single point in Ω is in exactly
one of A1, ..., An. Then for any event B,

P(B) = P(A1 ∩B) + . . .+ P(An ∩B)
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We’ve discussed the conditional probability of P(A|B), but we would like to
relate this to a similar quantity, P(B|A). We have a nicely stated rule that
helps us form this relationship.

Bayes’ Rule

P(Ai|B) =
P(Ai)P(B|Ai)

P(B)
.

Bayes’ rule is often used in inference. We often have a large number of
causes that may result in a certain effect – we examine the effect and try to
determine the likelihood of each probable cause. P(B|Ai) is the probability
that B occurs given the cause is Ai. Conversely, given that effect B has been
observed, we want to find P(Ai|B) that the cause is in fact Ai. We refer to
P(Ai|B) as the posterior of Ai, and we refer to P(Ai) as the prior.

1.4 Independence

Conditional probability (P(A|B)) Allows us to capture the information that
B provides about event A. We then have to consider the case when B
provides no such information. Two events A and B are independent if

P(A ∩B) = P(A)P(B).

If P(B) > 0, independence is equivalent to the condition

P(A|B) = P(A),

meaning that the fact that B occurred doesn’t give us new information on
whether or not A happened. If A and B are independent, then A and Bc are
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also independent. Two events A and B are conditionally independent
to another event C with P(C) > 0 if

P(A ∩B|C) = P(A|C)P(B|C).

If P(B ∩ C) > 0, then we can further equate this to

P(A|B ∩ C) = P(A|C).

Keep in mind that just because two events A and B are independent, they
are not necessarily conditionally independent.

We say that several events A1, A2, ..., An are independent if for every sub-
set S of {1, 2, ..., n},

P

(⋂
i∈S

)
=
∏
i∈S

P(Ai).

If any pair of events within a set of events are independent of each other,
they are pairwise independent. Note that just because a set of events are
pairwise independent, they aren’t necessarily independent (and vice versa).
Why? The intuition behind independence is that for a group of events,
removing any number of those events doesn’t effect the probability of the
remaining events.

1.5 Counting

Here are some basic counting rules:

1. Permutations of n objects: n!

2. k-Permutations of n objects: n!/(n− k)!

3. Combinations of k of n objects:
(
n
k

)
= n!/[k!(n− k)!]

4. Partitions of n objects into r grouops, with the ith group having ni
objects:

(
n

n1,n2,...,nr

)
= n!/(n1!n2! . . . nr!)
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2 Discrete Random Variables

In some probabilistic models, the outcomes are always numerical – they’re
prices, instrument readings, or gathered data. In many others, however,
the outcomes aren’t numerical but they might be related to a number. For
instance, we might be looking at how many students get a certain GPA.
When dealing with data like this, we want to assign numbers to the notion
that a certain event has a certain outcome. We introduce for this the con-
cept of the random variable.Given an experiment and a set of outcomes,
a random variable assigns each outcome to a number (the value of the
random variable). A random variable could be “the sum of two rolls of a
die” or “the time needed to make a trip.” While these concepts themselves
aren’t numerical, they are tied to real numbers, and random variables assign
numbers to those concepts. In more formal terms, a random variable is a
function f : Ω 7→ R of the experimental outcome.

A random variable is discrete if the set of values it can take on is either
finite or countably infinite. Random variables that can take on an infinite
number of values (i.e. “a2 where a is drawn from [−1, 1]”) are not discrete.

2.1 Probability Mass Functions

We are most interested in knowing the probabilities of each of the possible
values of the random variable. For a random variable X, we assign the
probability mass function (PMF) of X, pX . More specifically, if x is
a value that X can take on, the probability mass of x is pX(x), or the
probability of the event {X = x}:

pX(x) = P[X = x].

Note that we must follow the additivity and normalization axioms of proba-
bility laws, meaning that the events X = x are disjoint and form a partition
of Ω, and additionally ∑

x

pX(x) = 1.

Finding the PMF is simple – for each value x ∈ X, collect all the possible
values that could result in X = x, and sum their probabilities to get pX(x).

2.1.1 The Bernoulli Random Variable

Consider an event with only two possible outcomes, such as the flip of a coin.
The Bernoulli random variable takes on the values 1 or 0, with probabilities
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of p and 1− p, respectively. Formally,

X =

{
1 if a head

0 if a tail.

Bernoulli PMF

pX(x) =

{
p if k = 1

1− p if k = 0.

While the Bernoulli random variable is extremely simple to understand,
its real power comes from when several Bernoulli random variables are com-
bined.

2.1.2 The Binomial Random Variable

Instead of flipping a single coin, now we flip n coins, each with probability p
of heads, independent of each other. Let X be the number of heads after n
tosses. X is a binomial random variable with parameters n and p. The
PMF of X is as follows:

Binomial PMF

pX(k) = P (X = k) =

(
n

k

)
pk(1− p)n−k, k = 0, 1, ..., n.

There are
(
n
k

)
ways to select which of the n coins could be heads, and

the probability that they will is pk(1− p)n−k. Note that here we follow the
normalization property as well:

n∑
k=0

(
n

k

)
pk(1− p)n−k = 1.

2.1.3 The Geometric Random Variable

Let’s ask a different question now: Let’s toss the same coin over, where
P[heads] = p. Then X =the number of tosses for a head to come up for the
first time is a geometric random variable.

Geometric PMF

pX(k) = (1− p)k−1p, k = 0, 1, ...,
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since we’re asking for the probability that there are k − 1 consecutive
tails and then 1 heads on the kth flip. Again we can see that this follows
the normalization axiom:

∞∑
k=1

(1− p)k−1p = p

∞∑
k=0

(1− p)k = p · 1

1− (1− p)
= 1.

Moving away from the coin flip for a second, think of the geometric random
variable as doing something over and over until we hit a “success”, where
“success” is a loose definition (basically the first time something “meaning-
ful” happens).

2.1.4 The Poisson Random Variable

Let’s define the PMF of the Poisson random variable before we provide an
intuitive explanation for what it means.

Poisson PMF

pX(k) = e−λ
λk

k!
, k = 0, 1, 2, ...,

where λ > 0 characterizes the PMF.

Again, this satisfies normalization:

∞∑
k=0

e−λ
λk

k!
= e−λ

(
1 + λ+

λ2

2!
+ . . .

)
= e−λeλ = 1.

Think of a binomial random variable with a very small p and very large n.
LetX be the number of typos in a book with n words. X is binomial (either a
word is a typo or it isn’t), but p =the probability a word is misspelled is very
small. Instead of bothering with the complicated system of combinations
associated with the binomial PMF, we can approximate X using the Poisson
PMF. In general, the Poisson PMF is with parameter λ = np is a good
approximation for the binomial PMF with parameters n and p. Here n is
very large and p is very small, i.e.

e−λ
λk

k!
≈ n!

k!(n− k)!
pk(1− p)n−k, k = 0, 1, ..., n.
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2.2 Functions of Random Variables

Given a certain random variable X, we can generate more random variables
by transforming X. For example, let X represent the temperature in degrees
Celsius, and Y be the temperature in degrees Fahrenheit – then Y = 1.8X+
32. Here Y is a linear function in X, i.e.

Y = g(X) = aX + b.

We also consider nonlinear functions of the general form Y = g(X). If X is
a random variable, then Y is also a random variable, because it is still taking
outcomes from a probability space and assigning values to them. This means
that for every value pX(x), we can find an equivalent pY (y) by summing all
x ∈ X such that g(x) = y.

pY (y) =
∑

{x|g(x)=y}

pX(x).

2.3 Expectation, Mean, and Variance

The PMF of X gives us several numbers, all of the probabilities of every
possible value of X. However, this set of numbers is usually too descriptive
to be useful. Instead, we try to express the PMF ins a single representative
number. We do this through the expectation, which is a weighted (by
probability) average of all possible values of X.

Expectation

The expected value, expectation, or mean of a random variable
X with PMF pX(x) is

E[X] =
∑
x

xpX(x).

We interpret the mean as a “representative” value of X, somewhere in
the middle of the range. If we take the “mass” portion of “probability mass
function” a bit more literally, the expectation is the center of gravity of
the PMF. If you’ve taken a physics class, it might be interesting to think
about the question of where to place the fulcrum under a beam such that
the beam is balanced, and relate it back to this concept!
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2.3.1 Variance, Moments, and the Expected Value Rule

Let’s examine some more metrics we can gather about the PMF. The 2nd
moment of X is the expected value of X2 – more generally, the nth mo-
ment is E[Xn]. The second most important quantity associated with a
random variable (aside from E[X]) is the variance, Var(X).

Variance

Var(X) = E[(X −E[X])2] = E[X2]−E[X]2.

If we examine this expression, we see that we’re measuring how far (on
average) X deviates from its mean. The standard deviation is easier to
interpret (since it’s in the same units as X):

σX =
√

Var(X).

Calculating (X −E[X])2 can be tricky sometimes, even though it’s possible
to find it using our function properties above and the definition of E[X].
However, we have an easier method to calculate Var(X).

Let X be a random variable with PMF pX , and let g(X) be a function
of X. Then

E[g(X)] =
∑
x

g(x)pX(x).

This is the expected value rule for functions of random variables. This
simplifies everything greatly – we have now that

Var(X) = E
[
(X −E[X])2

]
=
∑
x

(x−E[X])2pX(x).

2.3.2 Properties of Mean and Variance

If Y = aX + b, then E[Y ] = aE[X] + b and Var(Y ) = a2Var(X).

2.3.3 Mean and Variance of Some Common Random Variables

1. Bernoulli(p): E[X] = p, Var(X) = p(1− p)

2. Uniform(k): E[X] = a+b
2 , Var(X) = (b−a)(b−a+2)

12 . a and b are the
bounds of the uniform distribution. These can be verified through
induction.

14



3. Pois(λ): E[X] = λ, Var(X) = λ

4. Geom(p, k): E[x] = 1
p , Var(X) = 1−p

p2
.

2.4 Joint PMFs of Multiple Random Variables

In the real world, we often want to examine models involving multiple ran-
dom variables. Consider two discrete random variables X and Y . The
probabilities of the values that X and Y can take is the joint PMF of X
and Y , written as pX,Y . If (x, y) is a pair of possible values of X and Y ,
then

pX,Y = P(X = x, Y = y).

Note that P(X = x, Y = y) = P(X = x ∩ Y = y). We can calculate the
individual PMFs of X and Y , the marginal PMFs, from the joint PMF:

pX(x) =
∑
y

pX,Y (x, y), pY (y) =
∑
x

pX,Y (x, y).

This comes from the law of total probability.

2.4.1 Functions of Multiple Random Variables

Now that we have this concept of joint PMFs, we can extend it to functions
of multiple variables. Consider a function Z = g(X,Y ). Its PMF can be
calculated from the pX,Y , just like we did in the single variable case:

pZ(z) =
∑

{(x,y)|g(x,y)=z}

pX,Y (x, y).

Likewise, the expected value for rule extends here as well:

E[g(X,Y )] =
∑
x

∑
y

g(x, y)pX,Y (x, y).

We can generalize this: Let Y = g(X1, X2, ..., Xn). Then

pY (y) =
∑

{(x1,x2,...,xn)|g(x1,x2,...,xn)}

pX1,X2,...,Xn(x1, x2, ..., xn),

E[Y ] =
∑
x1

∑
x2

. . .
∑
xn

g(x1, x2, ..., xn)pX1,X2,...,Xn(x1, x2, ..., xn).

Here we also explore the a crucial property of expectation.
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Linearity of Expectation

E[a1X2+a2X2+...+anXn+b] = a1E[X1]+a2E[X2]+...+anE[Xn]+b.

2.5 Conditioning

Recall the conditional probabilities of events we discussed in the first sec-
tion. Here we introduce conditional PMFs, the occurrence of an event given
the value of another random variable. This is nothing new, just a natural
extension of the concepts introduced earlier.

2.5.1 Conditioning a Random Variable on an Event

The conditional PMF of a random variable X, conditioned on an event
A with P(A) > 0, is defined as

pX|A(x) = P(X = x|A)
P(X = x ∩A)

P(A)
.

Since the events that compose X are disjoint (by definition), this leads us
to the interesting observation that

P (A) =
∑
x

P(X = x ∩A).

2.5.2 Conditioning one Random Variable on Another

If X and Y are variables in the same experiment, having knowledge of Y
gives some color as to the value of X. We capture this in the conditional
PMF of X given Y , which is determined by specializing A from the previous
example to Y = y.

pX|Y (x|y) = P(X = x|Y = y),

pX|Y (x|y) =
P(X = x, Y = y)

P(Y = y)
=
pX,Y (x, y)

pY (Y = y)
.
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2.6 Conditional Expectation

The conditional PMF can be thought of as the normal PMF over a new
universe determined by the condition. An analogous case follows for the
conditional expectation (and conditional variance). The conditional expec-
tation of X given an event A, P(A) > 0, is

E[X|A] =
∑
x

xpX|A(x), E[g(X)|A] =
∑
x

g(x)pX|A(x).

The conditional expectation of X given a value y of Y is

E[X|Y = y] =
∑
x

xpX|Y (x|y).

From the total probability theorem, we get an equivalent total expectation
theorem,

E[X] =
∑
y

pY (y)E[X|Y = y].

2.7 Independence

Independence with random variables is analogous to independence of events.
The independence of a random variable from an event is similar to the
independence of two events. X is independent from the event A is

P(X = x and A) = P(X = x)P(A) = pX(x)P(A), ∀x.

This is essentially saying that for all possible values of X = x, x and A are
independent.
We can extend this concept to two random variables. Two random variables
are independent if

pX,Y (x, y) = pX(x)pY (y) ∀x, y.

Likewise, X and Y are conditionally independent given an event A if

P(X = x, Y = y|A) = P(X = x|A)P(Y = y|A).

If X and Y are independent random variables, then

E[XY ] = E[X]E[Y ] Var(X + Y ) = Var(X) + Var(Y ).
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3 General Random Variables

Lots of random variables don’t necessarily take on a finite set of discrete
values. For continuous random variables, we try to measure events that
can occur on an infinite spectrum, such as velocities or amounts of liquid.

Continuous Random Variables and PDFs

Continuous Random Variables

A random variable X is called continuous if there is a nonnegative
function fX , the probability density function or PDF of X,

P(X ∈ B) =

∫
B
fX(x)dx

for every subset B of the real line.

Here the integral used is the Riemann/Darboux integral from most
calculus classes, and is implicitly assumed to be well-defined. To be more
specific, the probability that the value of X falls within a range [a, b] is

P(a ≤ X ≤ b) =

∫ b

a
fX(x)dx.

To qualify as a PDF, fX must be nonnegative (fX(x) ≥ 0 ∀x), and must
also satisfy the normalization property:∫ ∞

−∞
fX(x)dx = P(−∞ < X <∞) = 1.

The expected value or mean of a continuous random variable X is

E[X] =

∫ ∞
−∞

xfX(x)dx.

This is identical to the discrete case except the PMF is replaced by the PDF
and the summation is replaced by integration. Imagine a variable Y = g(X).
Y is a random variable, but it isn’t necessarily continuous. It follows the
expected value rule, i.e.

E[g(X)] =

∫ ∞
−∞

g(x)fX(x)dx.
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The nth moment of a continuous r.v. X is E[Xn], and the variance is
defined identically to the discrete case, as E[(X −E[X])2].

3.1 Exponential Random Variables

An exponential random variable has PDF

Exponential PDF

fX(x) =

{
λe−λx, x ≥ 0

0, x < 0

An exponential random variable is a good model for the amount of time
until something important takes place (a message arriving, a lightbulb burn-
ing out, etc). It is closely related to the geometric random variable, which
is an analog in discrete time.

E[X] =
1

λ
Var(X) =

1

λ2

3.2 Cumulative Distribution Functions

Until right now we’ve been dealing with discrete and continuous random
variables differently, with the PMF and PDF, respectively. We want to be
able to describe all kinds of random variables with a single concept. Here
we introduce the cumulative distribution function or CDF.

Cumulative Distribution Function

The CDF of X is denoted FX and provides the quantity P(X ≤ x).

FX(x) = P(X ≤ x) =

{∑
k≤x pX(x), X is discrete,∫ x
−∞ fX(t)dt X is continuous.

FX(x) “accumulates” the probability “up to” x. Some interesting prop-
erties:

1. FX is monotonically nondecreasing since the PDF and PMF are strictly
nonnegative.
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2. FX(x) tends to 0 as x −→ −∞ and 1 as x −→∞.

3. If X is discrete, then F(X)(x) is a piecewise constant function of x.

4. If X is continuous, then FX(x) is a continuous function of X.

It is interesting to note that the CDF of the geometric (1 − (1 − p)n) and
exponential (1− e−λx) random variables are related – the CDF of the expo-
nential is the limit of the CDF of the geometric.

3.3 Normal Random Variables

Normal Random Variable

A continuous random variable X is normal or Gaussian if its PDF
is of the form

fX(x) =
1√
2πσ

exp

{
−(x− µ)2

2σ2

}
.

Here E[X] = µ and Var(X) = σ2.

A normal random variable Y with zero mean and unit variance is called
standard normal. Its CDF, denoted by Φ, is

Φ(y) = P(Y ≤ y) =
1√
2π

∫ y

−∞
exp

{
−t2

2

}
dt.

Because the normal distribution is symmetric, note that Φ(y) = 1−Φ(−y),
which is useful for negative values of y.

Let X ∼ N (µ, σ). Then we can “standardize” X by defining a variable
Y such that

Y =
X − µ
σ

.

Y now has mean 0 and variance 1.

A vital property to keep in mind: the sum of a large number of independent
and identically distributed (i.i.d.) (not necessarily normal) random variables
has an approximately normal CDF, regardless of the CDF of the individual
random variables.
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3.4 Joint PDFs of Multiple Random Variables

We can now extend the notion of PDFs to the case of multiple random vari-
ables. Just like in the discrete case, we introduce the idea of joint, marginal,
and conditional PDFs.

Two continuous random variables are jointly continuous and can be de-
scribed in terms of a joint PDF fX,Y if fX,Y satisfies

P((X,Y ) ∈ B) =

∫∫
(x,y)∈B

fX,Y (x, y)dxdy,

For every subset B ∈ R2. In the case where B is a rectangle of the form
{(x, y)|a ≤ x ≤ b, c ≤ y ≤ d} we have

P(a ≤ X ≤ b, c ≤ Y ≤ d) =

∫ d

c

∫ b

a
fX,Y (x, y)dxdy.

We can interpret the joint PDF as a “probability per unit area” in the
vicinity of a certain point. To find the marginal density with respect to X,
we simply take

fX(x) =

∫ ∞
−∞

fX,Y (x, y)dy.

Likewise the marginal density of Y is

fY (y) =

∫ ∞
−∞

fX,Y (x, y)dx.

3.5 Joint CDFs

If X and Y are two random variables associated with the same experiment,
we define their joint CDF:

FX,Y (x, y) = P(X ≤ x, Y ≤ y).

Again, we use the CDF because it works for both discrete and continuous
random variables. In particular, if X,Y are described by the joint PDF
fX,Y , then

FX,Y (x, y) = P(X ≤ x, Y ≤ y) =

∫ x

−∞

∫ y

−∞
fX,Y (s, t)dtds

m
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fX,Y (x, y) =
∂2FX,Y
∂x∂y

(x, y).

Likewise, by the expected value rule,

E[g(X,Y )] =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)fX,Y (x, y)dxdy

This can be naturally extended into a a greater number of random variables.

3.6 Conditioning

Similar to how we can condition discrete random variables on events (or
other random variables), we can do the same for the continuous random
variables.The conditional PDF of a continuous random variable X on an
event A is defined as a nonnegative function fX|A that satisfies

P(X ∈ B|A) =

∫
B
fX|A(x)dx.

In the case where X is an element of the conditioning event, we can use a
“Bayesian” approach:

P(X ∈ B|X ∈ A) =
P(X ∈ B,X ∈ A)

P(X ∈ A)
=

∫
A∩B fX(x)dx

P(X ∈ A)
.

Let A1, A2, ..., An be a partition of Ω. Then

fX(x) =
∑

P(Ai)fX|Ai(x).

The conditional PDF of X given Y = y is

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
.

This definition is analogous to the discrete case. This can be generalized in
a single expression which relates the joint, marginal, and conditional PDFs:

fX,Y (x, y) = fY (y)fX|Y (x|y), fX(x) =

∫ ∞
−∞

fY (y)fX|Y (x|y)dy.

Additionally we can find the conditional probability as an integral of the
joint PDF:

P(X ∈ A|Y = y) =

∫
A
fX|Y (x|y)dx.

22



3.7 Conditional Expectation

The justifications behind the below are all in accordance with the discrete
case:

E[X|A] =

∫ ∞
−∞

xfX|A(x)dx

E[X|Y = y] =

∫ ∞
−∞

xfX|Y (x|y)dx

For a function g(X),

E[g(X)|A] =

∫ ∞
−∞

g(x)fX|A(x)dx

E[g(X)|Y = y] =

∫ ∞
−∞

g(x)fX|Y (x|y)dx

For a partition of the sample space,

E[X] =
∑

P(Ai)E[X|Ai]

E[X] =

∫ ∞
−∞

E[X|Y = y]fY (y)dy.

For functions of several random variables,

E[g(X,Y )|Y = y]

∫
g(x, y)fX|Y (x|y)dx,

E[g(X,Y )] =

∫
E[g(X,Y )|Y = y]fY (y)dy.

3.8 Independence

Two continuous random variables X and Y are independent if their joint
PDF is the product of their marginal PDFs:

fX,Y (x, y) = fX(x)fY (y), ∀x, y.

The remainder of the properties are the same as in the discrete case, i.e.
E[XY ] = E[X]E[Y ], Var(X + Y ) = Var(X) + Var(Y ), etc.
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3.9 Continuous Bayes

Many times, we have some unobserved phenomenon X with PDF fX , but an
observed noisy measurement Y which we model with the conditional PDF
fX|Y . We can get information about X through Bayes’ Theorem:

fX|Y (x|y) =
fX(x)fY |X(y|x)

fY (y)
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4 Further Topics on Random Variables

4.1 Derived Distributions

Say we are given Y = g(X). Given the PDF of X, we should be able to
calculate the PDF of Y . We do this in two steps:

1. Calculate the CDF FY of Y using the formula

FY (y) = P(g(X) ≤ y) =

∫
{x|g(x)≤y}

fX(x)dx

2. Differentiate to obtain the PDF of Y

fY (y) =
dFY
dy

(y).

4.2 Convolutions

Consider the function Z = X+Y of two independent, integer-valued random
variables with PMFs pX and pY . Then for any integer z

pZ(z) = P(X + Y = z)

=
∑

{(x,y)|x+y=z}

P(X = x, Y = y)

=
∑
x

P(X = x, Y = z − x)

=
∑
x

pX(x)pY (z − x)

pZ is called the convolution of the PMFs of X and Y .

Continuous Convolution

For X and Y continuous, and Z = X + Y , we get

fZ(z) =

∫ ∞
−∞

fX(x)fY (z − x)dx.

Notice that this is equivalent to the definition of signal convolution from
EE120.
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4.3 Covariance and Correlation

So far we’ve been able to examine what random variables are and how we
can create relationships (functions) using them. Here we explore how to find
the direction and inherent relationship between two random variables.

Covariance

The covariance cov(X,Y ) of two random variables X and Y is de-
fined by

cov(X,Y ) = E
[
(X −E[X])(Y −E[Y ])

]
.

If cov(X,Y ) = 0, the two random variables are uncorrelated.

The correlation coefficient ρ(X,Y ) is defined as

ρ(X,Y ) =
cov(X,Y )√

Var(X)Var(Y )

We can use the covariance to find a general formula for the variance of
the sum of several (not necessarily independent) random variables.

Var
(∑

Xi

)
=
∑

Var(Xi) +
∑
i 6=j

cov(Xi, Xj)

4.4 Conditional Expectation and Variance, Revisited

We can reformulate the law of total expectation into the law of iterated
expectations and create a law of total variance that relates conditional
and unconditional variance. As long as X is well defined and has a finite
expectation E[X], the law of iterated expectation says that

E[E[X|Y ]] = E[X].

The law of total variance states:

Var(X) = E[Var(X|Y )] + Var(E[X|Y ]).

4.5 Transforms

Here we introduce a transform associated with X, also known as the mo-
ment generating function MX(s) of a scalar s is

MX(s) = E[esX ].
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If X is a discrete random variable, the transform is given by

M(x) =
∑
x

esxpX(x),

and if X is continuous it is

M(s) =

∫ ∞
−∞

esxfX(x)dx.

In order to get the moment from the transform, we can differentiate with
respect to s. We take

d

ds
M(s) =

d

ds

∫ ∞
−∞

esxfX(x)dx

=

∫ ∞
−∞

d

ds
esxfX(x)dx

=

∫ ∞
−∞

xesxf(X)(x)dx.

Clearly we can see that evaluating this at s = 0 yields E[X]. Likewise,
evaluating the nth derivative at s = 0 will yield E[Xn] – try this for yourself
if you’re not convinced. The transform MX(s) is invertible, meaning we
can determine the probability law (CDF, PDF, or PMF) of X. The proof is
beyond the scope of this course. The formulas are difficult and cumbersome
to use, so we usually invert them through pattern matching to known tables
of distribution-transform pairs.

Transforms are particularly useful for the sum of random variables. The ad-
dition of independent random variables corresponds to the multi-
plication of transforms, which can provide for us a convenient alternative
to the convolution formula. Let Z = X + Y . Then

MZ(s) = E[esZ ] = E[es(X+Y )] = E[esXesY ] = E[esX ]E[esY ] = MX(s)MY (s).

More generally:

Z =
∑

Xi =⇒ MZ(s) =
∏

MXi(s).

4.6 Order Statistics

Let n ∈ Z+. Let X1, ..., Xn be i.i.d. continuous random variables with PDF
f and CDF F . Then for i = 1, ..., n let X(i) be the ith smallest of the rando
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mvariables. Then X(i) is known as the ith order statistic. The CDF of
the order statistic is

P(X(i) ≤ x) =
n∑
k=i

(
n

k

)
F (x)k(1− F (x))n−k.

Differentiating the CDF gives us the PDF, namely

fX(i)(x) = n

(
n− 1

i− 1

)
f(x)F (x)i−1(1− F (x))n−i.
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5 Limit Theorems

Here we examine what happens to sequences of random variables as the size
of the sequence becomes large. For a sequence of i.i.d random variables with
mean µ and variacne σ2, we define the sum of the first n variables as

Sn =
n∑
i=1

Xn.

Since they are independent, Var(Sn) =
∑

Var(Xi) = nσ2, meaning the
variance of Sn becomes large linearly as n, so we can’t get any meaningful
information here. What we can get meaningful information from is the
sample mean,

Mn =
1

n
Sn.

Then

E[Mn] = µ, Var(Mn) =
1

n
σ2,

which follows what we expect from some of the laws of large numbers you
may have seen in CS70. So now we can see that the variance of the sample
mean approaches 0 asymptotically, while the variance of Sn approaches in-
finity asymptotically. Let’s find a happy medium between the two. We can
create the zero-mean random variable Sn − nµ and divide by

√
nσ2 to get

Zn =
Sn − nµ
σ
√
n

.

Then
E[Zn] = 0, Var(Zn) = 1.

The central limit theorem asserts that as n −→∞, the standardized sum
of n random variables approaches standard normal.

5.1 The Markov and Chebyshev Inequalities

The inequalities mentioned here use the mean and variance of random vari-
ables to get an idea about the probabilities of certain events. They’re es-
pecially useful when we can’t determine the distribution of X but we can
calculate its mean and variance easily.

The Markov inequality asserts that if a nonnegative random variable has
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a small mean, the probability that it takes on a large value is small.

Markov’s Inequality

P(X ≥ a) ≤ E[X]

a
, ∀a > 0.

Note that this is not a tight bound, but it is a maximal upper bound.

The Chebyshev inequality makes a similar assertion. It states that if
the variance of a random variable is small, the probability that it takes on
a value far from the mean is also small. i.e. if X has mean µ and variance
σ2, then the following holds.

Chebyshev’s Inequality

P(|X − µ| ≥ c) ≤ σ2

c2
, ∀c > 0.

Since the Chebyshev inequality uses both the mean and variance, it
allows us to form a slightly tighter bound than the Markov inequality.

5.2 The Chernoff Bound

The Markov and Chebyshev bounds are extremely loose bounds, and as such
fare poorly when discussing random variables that fall off exponentially the
further you get from the mean. Here we introduce the Chernoff bound,
which lets us calculate tail probabilities for independent random variables
that fall off exponentially from the mean.

Let X1, ..., Xn be independent Poisson random variables with P[Xi = 1] =
pi, and let X =

∑
Xi as standard. Then if µ = E[X], the general Chernoff

bound for δ ∈ (0, 1] is

P[X < (1− δ)µ] <

(
e−δ

(1− δ)(1−δ)

)µ
.

This bound is a bit clunky to work with, so we can relax it a bit to the
following:
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Chernoff Bound

P[X < (1− δ)µ] < exp
{
−µδ2/2

}
.

5.3 The Weak Law of Large Numbers

The weak law of large numbers asserts that the sample mean of a large
number of i.i.d. random variables is very close to the true mean with high
probability. We can use the Chebyshev inequality to elaborate.

The Weak Law of Large Numbers

For a set of i.i.d. random variables with mean µ, ∀ ε > 0 we have

P(|Mn − µ| ≥ ε) = P

(∣∣∣∣ 1n∑Xi − µ
∣∣∣∣ ≥ ε) −→ 0, n −→∞.

5.4 Convergence in Probability

The weak law of large number essentially states that Mn converges to µ.
However, we need to define convergence a bit more tightly – after all, Mn is
a variable, not a constant value. We begin with the traditional definition of
convergence used in analysis: for a sequence of real numbers a1, a2, ... and
another real number a we say that an converges to a if:

∀ ε > 0, ∃N ∈ N : n > N =⇒ |an − a| ≤ ε.

Intuitively, this means that for a big enough n, an will be within ε of a for
any ε. In probability, we say something similar: for a sequence Y1, Y2, ... of
random variables, and a real number a, Yn converges to a if:

∀ ε > 0, lim
n−→∞P(|Yn − a| ≥ ε) = 0.

We can also rephrase this more generally to define the probability to be
accurate within some confidence level (this is more similar to the ε − δ
definition used in real analysis):

∀ ε > 0, ∀δ > 0, ∃N ∈ N : P(|Yn − a| ≥ ε) ≤ δ.
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5.5 The Central Limit Theorem

The Central Limit Theorem

Let X1, X2, ... be a sequence of i.i.d. random variables with common
mean µ and variance σ2, and define

Zn =
X1 + . . .+Xn − nµ

σ
√
n

.

We are taking the sum of random variables, removing the mean, and
keeping the variance fixed. Then the CDF of Zn converges to the
standard normal

Φ(z) =
1√
2

∫ z

−∞
exp

{
−x

2

2

}
dx,

in the sense that

lim
n−→∞P(Zn ≤ z) = Φ(z), ∀z.

This theorem is extremely general – aside from requiring the random vari-
ables to be independent and with finite mean and variance, the distribution
of the random variables does not matter. The sum of a large number of ran-
dom variables is approximately normal. We can use this to treat a large sum
Sn = X1 + . . .+Xn as if it were normal by normalizing it and approximating
with the standard normal CDF.

5.5.1 The De Moivre-Laplace Approximation of the Binomial

Remember the way we defined the binomial distribution earlier – as the
sum of n independent Bernoulli random variables. We can use the central
limit theorem now to approximate the probability of an event {k ≤ Sn ≤ l},
where k and l are given integers: the derivation is omitted.

The De Moivre-Laplace Approximation

If Sn is a binomial random variable with parameters n and p, with n
large, and k, l ∈ Z≥0, then

P(k ≤ Sn ≤ l) ≈ Φ

(
l + 1

2 − np√
np(1− p)

)
−Φ

(
l − 1

2 − np√
np(1− p)

)
.
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5.6 The Strong Law of Large Numbers

Here we also show that the sample mean converges to the tru mean, with a
different type of convergence. In general, we can write the following state-
ment.

The Strong Law of Large Numbers

Let X1, X2, ... be a sequence of i.i.d random variables with mean µ.
Then the sequence of sample means Mn = 1

n(X1, X2, ...) converges to
µ with probability 1 in the sense that

P

(
lim
n−→∞

X1 + ...+Xn

n
= µ

)
= 1.

What then, is the difference betweenn the weak and strong laws? The weak
law simply states that the probability that the sample mean deviates from
the true mean is low as n −→∞; however, that probability (that it does de-
viate significatly) still exists, but we don’t know how how many deviations
there will be. The strong law gives us this assurance, by saying that Mn

converges to µ with probability 1, so for any ε, the probability that |Mn−µ|
will exceed ε an infinite number of times is 0.

Note the difference in the convergence emphasized by the strong law versus
the weak law. We here define this new ”almost sure” definition of conver-
gence in more detail.

Almost Sure Convergence

Let Y1, Y2, ... be a sequence of random variables. Let c ∈ R. Yn
converges to c with probability 1 or almost surely if

P( lim
n−→∞Yn = c) = 1.

Almost sure convergence implies convergence in probability, but the converse
is not generally true!
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5.6.1 The Borel-Cantelli Lemma

Suppose that A1, A2, ... is a series of events in some probability space Ω.
Then the event that A occurs infinitely many times (denoted A(i.o.)) is:

A(i.o.) =
∞⋂
k=1

∞⋃
n=k

Ak.

The Borel-Cantelli Lemma

∞∑
n=1

P(An) <∞ =⇒ P(A(i.o.)) = 0.

This is to say that if the sum of individual probabilities of each event Ai is
finite, then the probability that infinitely many of the Ai occur is 0.

The converse of the lemma, sometimes called the second Borel-Cantelli
lemma, is true if each Ai is independent. Then

∞∑
n=1

P(An) =∞ =⇒ P(A(i.o.)) = 1.

5.7 Binary Erasure Channels

Suppose we want to send a message over a noisy channel. We do this in
three essential steps – we compress the message, add redundancy to deal
with noise, and then send the message through the channel. In the 1940’s,
Claude Shannon proved that we can design our source and channel coding
seperately without impacting the optimal rate.

A binary erasure channel (BEC) erases the input to the channel with
probability p ∈ (0, 1). How many bits can the transmitter send over the
channel without error? Say we’re encoding a length L message with a length
n > L message (to account for possible erasures). The ratio L/n is the rate
of the message. Assume that the receiver can’t contact us in the middle of
the transmission to tell us which bits were erased. For an input alphabet X
and output alphabet Y, we also send an encoding function fn : XL 7→ X n
and a decoding function gn : Yn 7→ XL. In a BEC, the input alphabet is
{0, 1} and the output alphabet is {0, 1, e}. Now we account for the noise in
the channel.
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Maximum Probability of Error

Let X(n) and Y (n) be n-length bit strings corresponding to the input
and output, respectively. Then

Pe(n) := max
x∈XL

P{gn(Y (n)) 6= x|X(n) = fn(x)}.

We say a rate R is achievable if for each positive integer n, there
exists a set of encoding and decoding functions that encode L to n
such that Pe(n) −→ 0 as n −→ ∞. The capacity of a channel is the
largest achievable rate.

The capacity of a BEC with erasure probability p is 1 − p. It is im-
portant that we use an intelligent encoding (i.e. Huffman coding) to make
sure that the receiver has to ask as few questions as possible to decode the
information, i.e. go over a small codebook.

The general result is stated in terms of the mutual information of ran-
dom variables, defined as I(X;Y ) := H(X) + H(Y ) −H(X,Y ). Let X be
the channel input and let Y be the channel output, and let P be the set of
probability distributions on X . The channel capacity is

C := max
p∈P,X∼p

I(X;Y ).

Channel Coding Theorem

Any rate below C is achievable. Conversely, any sequence of codes
with Pe(n) −→ 0, n −→∞ has rate R ≤ C.
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6 Discrete Time Markov Chains

Here we consider processes that depend on and (to an extent) can be pre-
dicted using what has happened in the past. We can summarize the effect
of the past on the future as a state, which changes over time according to
various probabilities. For this course, we only consider models with a finite
number of state values, whose probabilities are time-invariant.

6.1 Discrete-Time Markov Chains

We first start with Discrete-Time Markov Chains (DTMCs), where
the state changes at discrete time intervals n. The state of the chain at time
n is a random variable Xn, belonging to a finite set X of possible states
(the state space). The chain is described by its transition probabilities
P (xn, xn+1), describing the probability of going from state xn to state xn+1.

P (xn, xn+1) = P(Xn+1 = xn+1|Xn = xn), xn, xn+1 ∈ X .

Note something interesting in the above – the probability of going between
two states does not depend on the time at which we arrived at state xn,
and does not depend on how we got to state xn in the first place. This is
an important property of Markov chains.

The Markov Property

For all times n, for all states xn, xn+1 ∈ S, for all possible sequences
of states x0, ..., xn+1,

P(Xn+1 = xn+1|Xn = xn, ..., X0 = x0) = P(Xn+1 = xn+1|Xn = xn)

= P (xn, xn+1).

All elements of a Markov chain can be encoded in a transition probability
matrix (which is row stochastic, i.e. has row sums of 1) and graph,
drawn from a a 2-dimensional array with the element in row i, column j
corresponding to pij .

1 2a

b

c

d ⇐⇒
(
a b
c d

)
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6.1.1 The Probability of a Path

Given a chain, we can compute the probability of a sequence of future states,
similar to the multiplication rule in probability tree models. In particular
we have

P(X0 = x0, X1 = x1, ..., Xn = xn) = π0

n∏
k=1

pik−1ik .

Think of this as following the path from node to node in the transition graph
and multiplying the probabilities at each step.

6.1.2 k-Step Transition Probabilities

We often want to find the probability law of the state in the future.

Pk(x, y) := P(Xk = y|X0 = x) = P k(x, y).

Put another way, this is the probability that after k steps we will reach state
y starting from state x, which is the (x, y) entry of the kth power of P We
calculate this (the k-step transition probabilities) using the following
recursion:

Chapman-Kolmogorov Equations

The k-step transition probabilities can be generated from

Pk(x, y)) = P(Xk = y|X0 = x)

=
∑

x1,...xk−1∈X
P(Xk = y,Xk−1 = xk−1, ..., X1 = x1|X0 = x)

=
∑

x1,...xk−1∈X
P (x, x1)P (x1, x2) . . . P (xk−2, xk−1)P (xk−1, y)

= P k(x, y)

6.2 Classification of States

The probabilities associated with each state give us different information
about each state. For instance, some states, once visited, are certain to be
visited again, while others may never be visited again. Here we draw a rela-
tionship between the states of a Markov chain and the long-term frequency
with which they are visited.
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For each x ∈ X , let us define a random variable T+
x := minn ∈ N : Xn = x,

the hitting time of state x. Additionally define Px and Ex to indicate that
the chain begins at state x, i.e.

Px(·) := P(·|X0 = x)

Ex(·) := E[·|X0 = x].

Then for x, y ∈ X , let ρx,y = Px(T+
y < ∞), the probability we are guar-

anteed to see state state y starting from state x. Let ρx = ρx,x. Clearly,
if ρx = 1 (we are guaranteed to see state x from state x), we will visit x
infinitely; this state is recurrent. Likewise, if ρx < 1, we are guaranteed to
stop seeing x from x after a countably infinite number of steps; this state
is transient. Classifying a state as transient or recurrent only depends on
whether or not arrows exist in the transition probability graph; they do not
depend on what the actual probabilities are.

Px-a.s.

Let Nx denote the total number of visits to state x, that is, Nx :=∑
n∈N 1{Xn = x}. If x is recurrent, then Nx = ∞Px − a.s., so in

particular Ex[Nx] =∞. If x is transient, then Ex[Nx] <∞; in fact,

Ex[Nx] =
ρx

1− ρx
<∞.

In particular, Nx <∞Px − a.s.

Let A(x) be the set of all states accessible (through a series of state transi-
tions) from x. If x is recurrent, A(x) forms a recurrent class or commu-
nicating class, meaning all states in A(x) are accessible from each other
and no state outside A(x) is accessible from them. In graph theory, we call
this a strongly-connected component. If a Markov chain is irreducible
if it has only a single communicating class.

1 2 3 4

Recurrent Transient Recurrent Recurrent
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At least one recurrent state must be accessible from any transient state. We
can decompose any Markov chain into one or more recurrent classes plus
possibly a few transient states. Decompositions let us visualize the evolu-
tions of states. Once the state enters in a class of recurrent states, it stays
within that class, and since all states in the class are accessible from one
another, all states in the class will be visited an infinite number of times. If
the initial state is transient, then the state trajectory will contain an initial
portion of transient states and a final portion consisting of recurrent states
within the same class.

Periodicity

Consider a communicating class R. This class is periodic if its
states can be grouped in d > 1 disjoint subsets S1, ...,Sd so that all
transitions from Sk lead to Sk+1.

The class is aperiodic if and only if there exists a time k
such that Pk(x, y) > 0, ∀ x, y ∈ R.

6.2.1 Positive Recurrence and Null Recurrence

A sequence of random variables is stationary if for all k, n ∈ Z+, and all
events Ai, ..., An, then

P(X1 ∈ A1, ..., Xn ∈ An) = P(Xk+1 ∈ A1, ..., Xk+n ∈ An).

What does this mean? All we’re saying here is that the distribution of
X1, ..., Xn stays the same as the joint distribution if we shift the time index
by k to Xk+1, ..., Xk+n. Many stochastic processes converge to this notion
of stationarity.

Stationarity

Suppose that a Markov chain is irreducible with a stationary distri-
bution π. Then, for teach x ∈ X ,

π(x) =
1

Ex[T+
x ]
.
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A Markov chain is, essentially, a way to introduce dependency into the idea
of i.i.d. random variables. As such, our best shot at understanding them is
by analyzing the i.i.d. structure hidden within the chain. If we’re at state x
for the 1st time, there is no difference in the distribution than if we were at
state x for the kth time; let Tx(k) be the kth time we hit state x. Then for
all k, we can split the Markov chain into XTx(k), ..., XTx(k+1 − 1 and treat
each of these as i.i.d random variables, giving rise to the above expression.

Positive and Null Recurrence

State x is is positive recurrent if x is recurrent and Ex[T+
x ] < ∞

(the expected time to return to x is finite).
State x is null recurrent if x is recurrent and Ex[T+

x ] = ∞ (the
expected time to return to x is infinite).

6.3 Steady-State Behavior

We’ll examine both the long and short-term behavior of Markov chains.
We begin by looking at what the k-step transition probabilities Pk(x, y) are
when k is very large. If a Markov chain has multiple classes of recurrent
states, the limiting value of Pk(x, y) must depend on our initial state. We
focus selectively on chains that have only one recurrent class plus transient
states. Even when a chain only has a single recurrent class, Pk(x, y) may
not converge! Examine the following Markov chain:

1 2

p = 1

p = 1
⇐⇒ Pk(x, y) =

{
1, k even

0, k odd

This is what happens when the recurrent class is periodic. Ignoring the two
cases mentioned previously (multiple classes and periodicity), we can create
the following theorem:
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Steady-State Convergence Theorem

Consider a Markov chain with a single aperiodic recurrent class. Then
each state x has an associated steady-state probability π(x):

1. ∀ x,
lim
n−→∞Pk(y, x) = π(x), ∀i

2. π(x) are the unique solutions of the following:

π(x) =
∑
y∈X

π(y)P (y, x) j = 1, ...,m,

1 =
∑
x∈X

π(x)

The steady-states sum to 1 and form a distribution, called the stationary
distribution. This is because for all n, P(Xn = x) = π(x). This means
that if some initial state is chosen according to the stationary distribution,
the state at any future time will have the same distribution. The equations∑

y∈X
π(y)P (y, x)

are the balance equations. Together with the normalization equation

1 =
∑
x∈X

π(x).

An irreducible positive reccurent Markov chain has a unique stationary dis-
tribution; likewise, an irreducible Markov chain is positive recurrent if and
only if a stationary distribution exists. What does it mean if the stationary
distribution doesn’t exist? If µ is the solution to the balance equations, then
a stationary distribution does not exist if it is impossible to normalize µ,
i.e.

∑
µ(x) = 0 or

∑
µ(x) =∞. Otherwise, if

∑
µ(x) = c, then π := c−1µ.

The fraction of time we spend in state x converges almost surely to π(x) as
the number of steps we take increases infinitely.

Here we also have the first-step equations:
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First-Step Equations

For each state x:

π(x) = 1 +
∑
y∈X

P (x, y)π(y)

The expected time to return to a state x:

Ex[T+
x ] = 1 +

∑
y∈X

P (x, y)Ey[T
+
x ]

6.4 Reversibility of Markov Chains

When does a Markov chain look the same whether we run it forwards in
time or backwards in time? Fix a positive integer N and define Yn = XN−n;
this is the reversed chain. If the original chain is irreducible and the chain
is started from stationary distribution π, then the reversed chain is also
irreducible with transition probabilities P̂ (x, y) = π(y)P (x, y)/π(x). The
stationary distribution for the reversed chain is also π. The reversed chain
looks the same as the original chain if

π(x)P (x, y) = π(y)P (y, x).

The above is known as the detailed balance equations. The condition
for stationarity is

π(y) =
∑
x∈X

π(x)P (x, y)

This is a stronger condition than the global balance equations; the global
equations say the probability mass entering a state equals the probability
mass exiting the state. The detailed equations express a local condition
where the mass along each edge is balanced.
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7 The Bernoulli and Poisson Processes

What is a process? A stochastic process is a model of a probabilistic
experiment over time. Each value in the process is a random variable, so
really a process is just a sequence of random variables. In processes, we focus
on dependencies in the sequence of values, long-term averages involving
the values, and the likelihood or frequencies of boundary events. Here we
discuss arrival processes, where we care about the times between arrivals. If
the arrivals occur in discrete time, we model this with the Bernoulli process,
and if the arrivals occur in continuous time we model them with the Poisson
process.

7.1 The Bernoulli Process

The Bernoulli process can be visualized as a sequence of independent coin
tosses with probability p. Take a sequence of random variables, where suc-
cess at the ith variable occurs with probability p. Recall the properties of
the binomial and geometric distributions from earlier in this course. Addi-
tionally recall the memoryless property of the geometric distribution; the
future of the process does not depend on how much time has already passed.

7.1.1 Interarrival Times

One of the reasons we study processes is to determine the time of the kth
success, or arrival, Yk. Because of this, we can express the events of the
process as a sequence of geometric random variables T1, ... with param-
eter p, standing for the time in between arrivals. Then the sequence is
T1, T1 + T2, T1 + T2 + T3... We then have the following set of observations:
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Properties of the kth Arrival Time

The kth arrival time is the sum of the first k interarrival times:

Yk = T1 + ...+ Tk,

where Ti are independent geometric random variables with common
parameter p.

E[Yk]
∑

E[Ti] =
k

p
,

Var(Yk) =
∑

Var(T1) =
k(1− p)

p2
.

The PMF of Yk is then

pYk(t) =

(
t− 1

k − 1

)
pk(1− p)t−k, t = k, k + 1, ...,

the Pascal PMF of order k.

7.1.2 Splitting and Merging of Bernoulli Processes

Consider splitting a process: When there is an arrival, we keep it with
probability q or discard it with probability 1 − q. Then the probability of
there being an arrival we keep is pq and the probability of there being an
arrival we discard is p(1−q). We are essentially sorting our standard arrival
process into two processes.

We can also merge two processes, recording an arrival in the merged process
if there is an arrival in one of the two processes, with probability p+ q− pq
1− (1− p)(1− q).

7.2 The Poisson Process

The continuous-time variant of the Bernoulli process is the Poisson pro-
cess. An arrival process is a Poisson process with rate λ if if the the prob-
ability of k arrivals in τ time, P (k, τ) is the same for all intervals of length
τ . The number of arrivals during an interval is independent of the num-
ber of arrivals outside that interval. Additionally, it satisfies the following
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small-interval probabilities:

P (0, τ) = 1− λτ + o(τ),

P (1, τ) = λτ + o1(τ),

P (k, τ) = ok(τ),

Here

lim
τ−→0

o(τ)

τ
= 0, lim

τ−→0

ok(τ)

τ
= 0.

Think of o(τ) as the O(τ2) terms in the Taylor expansion of P (k, τ). The
probability of a single arrival is roughly λτ with a negligible term. The
probability of 0 arrivals is roughly 1− λτ .

Random Variables Associated with the Poisson Process

The number of arrivals Nτ in a Poisson process with parameter λ over
an interval τ :

pNτ (k) = P (k, τ) = e−λτ
λkτk

k!

E[Nτ ] = λτ Var(Nτ ) = λτ.

The time until the first arrival T :

fT (t) = λe−λt, E[T ] =
1

λ
, Var(T ) =

1

λ2
.

The Poisson process is also independent; i.e. two non-overlapping time sets
can be considered independent processes, and the distribution of interarrival
times is memoryless. Just as the first arrival after time t for the Bernoulli
process is distributed geometrically, the first arrival after time t for the
Poisson process is distributed exponentially.
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The kth Arrival Time

As with the Bernoulli process, we can model the Poisson process as
a sequence of independent exponential random variables with param-
eter λ, and record arrivals at times T1, T1 + T2 , .... Then the kth
arrival time is the sum of the first k interarrival times:

Yk =
k∑
i=1

Ti,

where Ti are independent exponential random variables with common
parameter λ.

The mean and variance of Yk are

E[Yk] =

k∑
i=1

E[Ti] =
k

λ
,

Var(Yk) =
k∑
i=1

Var(Ti) =
k

λ2
.

The PDF of Yk is

fYk(y) =
λkyk−1e−λy

(k − 1)!
, y ≥ 0,

the Erlang PDF of order k.

7.2.1 Poisson Splitting and Merging

Just as with the Bernoulli case, we can split a Poisson process into two
Poisson processes (with rate λp) if we split with probability p (keep with
probability p and discard with probability 1 − p). Alternatively, we can
merge two Poisson processes into a single process with merged rate λ1 +λ2;
the probability that an arrival occurs in the first process is λ1

λ1+λ2
, and the

probability that an arrival occurs in the other is λ2
λ1+λ2

. In fact, the sum of
n Poisson processes is a Poisson process with parameter

∑
λi.
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7.2.2 Sums of Random Variables

Sums of Random Numbers of Random Variables

Let N and X1, X2, ... be random variables, and let Y =
∑N

i=1Xi.

1. If Xi is Bernoulli with parameter p and N is binomial with
parameters m, q, then Y is binomial with parameters m and pq.

2. If Xi is Bernoulli with parameter p, and N is Poisson with
parameter λ, then Y is Poisson with parameter λp.

3. If Xi is geometric with parameter p, and N is geometric with
parameter q, then Y is geometric with parameter pq.

4. If Xi is exponential with parameter λ, and N is geometric with
parameter q, then Y is exponential with parameter λq.

7.2.3 The Random Incidence Paradox

Here we examine an interesting property of the Poisson process. Assume we
take some random time t∗ during the process. We call this time a “random
incidence,” but be aware that this isn’t a random variable, just an arbitrary
time. Assume that t∗ happens after the process has been running for a long
time, so there has been an arrival sometime in the past. Here we consider
the length L interval that contains t∗. We could argue that L is distributed
exponentially, like a typical interarrival period. However this is not true
– L is distributed according to an Erlang distribution with parameter 2.
This is because the time from t∗ to the next arrival is a Poisson process
with parameter λ; likewise, the time from t∗ to the previous arrival is also
a Poisson process with parameter λ. Then L is distributed according the
Erlang PDF of order 2 by our previous assertions.
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8 Erdös-Rényi Random Graphs

Given n ∈ Z+, and some probability value p ∈ [0, 1], the graph G(n, p) is
defined as an undirected graph on n vertices such that each of the

(
n
2

)
edges

of the graph is present (independently) with probability p. This means if
p = 0, G is an empty graph and if p = 1 then it is a fully connected graph.
We typically define p as a function of n, p(n), and are especially interested
in what happens as n −→ ∞. Clearly, then, G(n, p) is a distribution over
the set of graphs on n vertices! The “PDF” of G ∼ G(n, p) can be easily
calculated:

P(G = G0) = pm(1− p)(
n
2)−m.

8.1 Sharp Threshold for Connectivity

Sharp Threshold

Let

p(n) = λ
lnn

n

for λ > 0. Then if λ < 1, then P(G(n, p(n) is connected) −→ 0; if λ > 1,
then P(G(n, p(n) is connected) −→ 1. This is called a sharp thresh-
old since a slight deviation in λ around 1 can drastically change the
behavior of the limit.
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9 Bayesian Statistical Inference

Here we deviate from our pure mathematical subject of probability (based
on the principles from the first chapter) and move towards statistics. In
probability theory, we assume some underlying model and attempt to pre-
dict future events using this information. In statistics, we observe some
event, and attempt to figure out the process which could have led to those
observations. If we are drawing red and blue balls from a bag, probability
gives us information about what ball we’ll draw next given that we know
how many of each are in the bag. Statistics lets us infer how many of each
are in the bag based on the balls we draw.

There are two schools of thought for looking at statistics – the Bayesian
and the classical (or frequentist). In the former, unknown quantities are
treated as random variables with known distributions; in the latter, un-
known values are treated as deterministic quantities that just happen to
have unknown values.

There are two forms of inference. In model inference, we take our ob-
servations and try to construct a model to explain the process behind those
observations. In variable inference, we estimate the value of some un-
known variable through some noisy observations.

We can roughly classify statistical inference into two buckets. In parame-
ter estimation, we have a model with some unknown parameter θ, which
we try to estimate using either a Bayesian or classical approach. In m-ary
hypothesis testing, we take m possible hypotheses and use our data to
determine which is true.

9.1 Bayesian Inference

The Bayesian method operates by defining a random variable Θ that rep-
resents our model, and a probability distribution pΘ(θ) (the prior). We
can then make a set of observations x and derive a posterior distribution
pθ|X(θ|x). There are three key principal Bayesian inference methods we ex-
plore here: Maximum a posteriori (MAP), where we select the hypothe-
sis/parameter with the highest posterior probability; Least mean squares
(LMS), where we select the hypothesis/parameter with the minimum mean
squared error between the parameter and its estimate; and Linear least
mean squares (LLMS), where we select an estimator as a linear function
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of the data that minimizes the mean squared error between the parameter
and its estimate.

We assume a prior pΘ or fΘ for thee unknown Θ, assume a model pX|Θ or
fX|Θ for the vector of data or observations X, and then use Bayes’ rule (dif-
ferent versions depending on whether X and Θ are discrete or continuous)
to determine the posterior pΘ|X or fΘ|X .

4 Versions of Bayes’ Rule

Let

φ =

{
pX(x) X discrete,

fX(x) X continuous.

Then, Bayes rule is as follows:

φΘ|X(θ|x) =



φΘ(θ)φX|Θ(x|θ)∑
θ′

φΘ(θ′)φX|Θ(x|θ′)
Θ discrete,

φΘ(θ)φX|Θ(x|θ)∫
φΘ(θ′)φX|Θ(x|θ′)dθ′

Θ continuous.

9.2 Point Estimation, Hypothesis Testing, and the MAP
Rule

Now that we’ve introduced the framework for Bayesian inference, we can
introduce a method that we can then apply to estimation and hypothesis
testing problems. We’re given a value x of an observation, and we select a
value of θ (normally denoted θ̂) that maximizes the posterior pΘ|X(θ|x) (or
fΘ|X(θ|x) for continuous Θ). This is known as the Maximum a Posteriori
rule (or MAP).
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Maximum a Posteriori (MAP)

Given an observation value x, we select the value θ̂ that maximizes θ
over the posterior pΘ|X(θ|x) or fΘ|X(θ|x) (depending on whether Θ
is discrete or continuous).

θ̂ = arg max
θ
pΘ|X(θ|x) ⇐⇒ θ̂ = arg max

θ
fΘ|X(θ|x).

By Bayes’ rule, the form of the posterior distribution is a fraction,
where the numerator is dependent on both x and θ. However, it is
important to note that the denominator is the same for all values of θ
(it is dependent on θ′, which takes on all values in Θ). Therefore, we
can exclude the denominator entirely, and are left with the following
(using the definition of φ from the previous box):

θ̂ = arg max
θ
φΘ(θ)φX|Θ(x|θ).

If Θ takes on a finite number of values, then MAP essentially mini-
mizes the probability of selecting the wrong hypothesis.

9.2.1 Point Estimation

Point Estimates

An estimator is a random variable Θ̂ that is a function of our ob-
servations, i.e.

Θ̂ = g(X).

An estimate is a value θ̂ of an estimator, which is determined by an
actual observation x.

The MAP estimator selects θ̂ to be the θ that maximizes
the posterior distribution over all θ given x.

The conditional expectation estimator (called the LMS
estimator) selects the θ̂ that is E[Θ|X = x]. This is called the LMS
estimator because it has the property that it minimizes the mean
squared error over all estimators.
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9.2.2 Hypothesis Testing

In a hypothesis testing problem, θ takes on one of a small set of values. The
ith hypothesis, Hi, is the event Θ = θi. Once we’ve observed x of X, we can
calculate the probability of each hypothesis given the outcome. We can then
select the hypothesis that maximizes this posterior probability (the MAP
rule). The probability of a correct decision is then

P(Θ = gMAP (x)|X = x).

9.3 Bayesian Least Mean Squares

Here we discuss the second estimator we mentioned above, the Least Mean
Squared or LMS estimator. Consider a simpler problem, where we don’t
have any observations x. Then the mean squared error E[(Θ − θ̂)2] is
minimized when θ̂ = E[Θ]. We use the MSE because if we were to just use
Θ − θ̂, we have a random variable that cannot be minimized in θ. In this
case:

E
[
(Θ−E[Θ])2

]
≤ E[(Θ− θ̂)2].

Now we consider our observation x of X; in this case, E[(Θ− θ̂)2|X = x] is
minimized at θ̂ = E[Θ|X = x]:

E[(Θ−E[Θ]|X = x])2|X = x] ≤ E[(Θ− θ̂)2|X = x].

Finally, for all esimators g(X), the MSE is minimized when g(X) = E[Θ|X]:

E[(Θ−E[Θ|X])2] ≤ E[(Θ− g(X))2].

Properties of the Estimation Error

If we have the LMS estimator Θ̂ = E[Θ|X], then the estimation
error is Θ̃ = Θ̂− θ.

1. Θ̃ is unbiased, i.e. it has 0 mean both conditionally and un-
conditionally (E[Θ̃] = Eθ[Θ̂] − θ = 0, E[Θ̃|X] = 0). The value
Eθ[Θ̃] is the bias, denoted bθ(Θ̂).

2. Θ̃ is uncorrelated with Θ̂, i.e. cov(Θ̂, Θ̃) = 0.

3. Var(Θ) = Var(Θ̂) + Var(Θ̃).
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10 Classical Parameter Estimation

In a classical setting (as opposed to the Bayesian one we previously in-
troduced), we view the unknown parameter θ as deterministic rather than
random. X, the observation, is then random, and instead of dealing with a
single probabilistic model we deal with several possible candidate models.

10.1 Classical Parameter Estimation

Recall the definitions of an estimator and estimate from the previous
section. The definitions of estimation error and bias are the same. It is
interesting to note that the mean squared error can also be written as

E[Θ̃2] = b2θ(Θ̂) + Var(Θ̂).

This leads to an interesting problem in machine learning known as the bias-
variance tradeoff, where reducing the bias term increases the variance
term and vice versa.

10.1.1 Maximum Likelihood Estimation (MLE)

In classical parameter estimation, we can describe a random vector of
observations X by a join PMF pX(x; θ), dependent on a deterministic pa-
rameter θ. Then a maximum likelihood estimate is a value of θ̂ that
maximizes pX(x = (x1, ...xn); θ) over all θ. Thus,

θ̂ = arg max
θ
pX(x1, ..., xn; θ).

Note that for a continuous X, we replace the PDF pX(x; θ) with the PMF
fX(x; θ); we call this the likelihood function. If each observation is inde-
pendent (which we usually assume), we can simplify this to

θ̂ = arg max
θ

∏
pXi(xi; θ).

Since the logarithm is increasing on its domain, we can equivalently maxi-
mize the log likelihood, i.e.

θ̂ = arg max
θ

∑
log pXi(xi; θ).

Note the difference between the term likelihood and probability. We are not
looking for the probability of θ, since we know that θ is a deterministic (but
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unknown) quantity. Instead, we’re asking “what would θ need to be to max-
imize the chance that we saw the observations we did?”

Note our maximization of pX(x; θ) here, and how in our previous MAP
formulation we maximized pΘ(θ)pX|Θ(x|θ). In this way, we can consider
MLE the same as MAP with a uniform prior, meaning that the prior for
θ is the same for all θ.

10.2 Hypothesis Testing

Recall the issue of hypothesis testing we brought up in the previous section.
However, now we assume that we have no prior information. We have two
hypothesis we are deciding between – H0, the null hypothesis, and H1, the
alternative hypothesis. More precisely, we say we have Θ1 and Θ2, and
based on x, we want to know which is more likely; θ ∈ Θ0 or θ ∈ Θ2 (note
the similarity to the parameter estimation problem above!). If θ ∈ Θ0, then
H0 is correct; otherwise if θ ∈ Θ1 then H1 is correct. For this class, we
are mainly focused on frequentist hypothesis testing (i.e. H0 being
true is unknown but not random). We introduced the Bayesian
idea above briefly, but it is not a focus of this class.

Let’s be more precise about what accepting a hypothesis means. We can
split our total set of possible observations X into two categories: A and
Ac. We call A the acceptance region of observations, i.e. we accept
H0 ⇐⇒ x ∈ A.

Acceptance Region Examples

Some examples of acceptance regions:

• Reject H0 if x > t

• Reject H0 if x = t

• Reject H0 with probability γ if x > t

As always however, we have to take into account error. If we reject the null
hypothesis when the null hypothesis is actually correct, we have a Type-
I Error or probability of false alarm (PFA). Formally, let PHi(B)
denote the probability of an event B occurring when Hi is true. Then the
probability of type-I error (the significance level) is

α(A) = PH0(H1) = PH0(x 6∈ A).
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Analogously, we have type-II error, i.e. the probability that we accept the
null hypothesis when in reality the alternative is true. Formally:

β(A) := PH1(H0) = PH1(x ∈ A).

Neyman-Pearson Hypothesis Testing

Define the likelihood to be:

L(x) =
PH1(x)

PH0(x)
, L(x) =

fH1(x)

fH0(x)
.

Then the Neyman-Pearson Test states that, for some threshhold
c:

1. Accept H0 if L(x) < c

2. Reject H0 with probability γ if L(x) = c

3. Reject H0 if L(x) > c

Note that this is optimal when the following are true:

PH0(L(x) > c) + γPH0(L(x) = c) = α0

PH1(L(x) < c) + (1− γ)PH1(L(x) = c) = β0.

If you’ve taken EE127 or an equivalent optimization course, you may notice
that this is a simple optimization problem:

max
c

1−PH1(L(x) < c)− (1− γ)PH1(L(x) = c)

s.t.PH0(L(x) > c) + γPH0(L(x) = c) = z

This is all very complicated and can be difficult to compute. In
this class, there is often a relationship L(x) ⇐⇒ B for some B which is
much simpler to understand; for example, we’ll have L(x) be monotonic in
x, meaning L(x) > c ⇐⇒ x > t or x < t, which makes all of the above
much easier.
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11 Hilbert Spaces, Estimation, and Kalman Fil-
tering

As we conclude this course with estimation, we draw a parallel between
spaces of random variables and vector spaces. Note that this portion is
fairly heavy in linear algebra on the level of Math110. Before we begin, let’s
introduce once particular set (with X random):

H{X : X ∈ Rs.t. E[X2] <∞}.

11.1 A Brief Review of Linear Algebra

Recall that a vector space V is a collection of objects (vectors) including
the zero vector on which the operations of vector addition and scalar
multiplication are defined. Vector addition is commutative, associative,
and satisfies the identity property with the zero vector. Scalar multiplica-
tion is distributive, commutative, and associative, and satisfies the identity
property with the 1 vector.

For a set S ⊆ V, span(S) is the set of vectors achievable by only using
scalar multiplication and vector addition (using vectors in S), i.e.

span(S) =

{
m∑
i=1

civi,m ∈ N,vi ∈ S, ci ∈ R

}
.

In other words, every element in the span of S is a linear combination
of the vectors in S. Additionally recognize that span(S) must be a vector
space. Whenever we have U ⊆ V and U is a vector space, we call U a sub-
space.

Note that if v ∈ S and v is a linear combination of other vectors in S,
then span(S) = span(S\{v}). We call v a redundant vector, and if S
contains no redundant vectors, we call S linearly independent. If S is
linearly independent and spanS = V (i.e. S is a generating set for V)
then we call S a basis for V. Every vector space has a basis, and all bases
for the same vector space have the same cardinality or size, known as the
dimension of V and denoted dimV.

11.2 Inner Product Spaces and Hilbert Spaces

An inner product 〈·, ·〉 maps V×V 7→ R≥. The inner product is symmetric
(〈u,v〉 = 〈v,u〉), linear (〈u + cv,w〉 = 〈u,w〉 + c〈v,w〉), and positive
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definite (〈u,v〉 > 0, u 6= 0). Then we call V along with the map 〈·, ·〉 a
real inner product space. The inner product gives us two concepts: a
norm and angle:

‖ · ‖ : V 7→ R≥, ‖v‖ =
√
〈v,v〉, 〈u,v〉 = ‖u‖‖v‖ cos θ.

We are most interested in when θ = 0, i.e. 〈u,v〉 = 0; we then call u and v
orthogonal.

H is a Hilbert space if it is a real inner product space that is com-
plete. We don’t need to worry about what completeness means for this
course, but I’m putting the full definition here if you’re interested. Addi-
tionally, we behave as ifH is finite-dimensional (even though it usually isn’t).

Formal introduction (not in scope): A Hilbert space is a vector
space that is complete with respect to an inner product defined on that
space (a metric space M is complete if every Cauchy sequence in M con-
verges in M). It is an instance of a Banach space (defined by any convex
set) wherein the norm is defined via the inner product (ellipse).

11.3 Projection

We want to estimate a random variable Y ∈ H. However, we only know
some X that is correlated with Y . We want to find a “best guess” function
of X that estimates Y . This problem because much easier if we restrict
ourselves to affine functions of the form a + bX. Then our “best guess” is
the point x ∈ U , U = span{1, X} ⊆ H that is closest to Y . We find this
by finding the shortest orthogonal distance to Y . Formally, the shortest
orthogonal distance is

P : V 7→ U Py := arg min
x∈U
‖y − x‖2.

Note that Py is in U and y−Py is orthogonal to U (equivalently, y−Py ∈
U⊥).

11.4 Gram-Schmidt Orthonormalization

Since Py ∈ U and y−Py ∈ U⊥, y−Py must be orthogonal to every basis
vector for U . Since Py is linear, Py =

∑
civi for basis vectors vi. We can

then compute Py by solving:〈
y −

n∑
i=1

civi,vj

〉
= 0.
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What is the basis vectors were orthornormal? This makes our job much
easier, since we would then be able to get each component of P by computing
〈y,vi〉. How do we orthonormalize our basis vectors? We can use the
following:

Gram-Schmidt Process

u[1] = v[1]/||v[1]||

for j in 1,...,n-1:

let w[j+1] = v[j+1]

- sum from i-1 to j of (<v[j+1], u[i]>u[i])

set u[j+1] = w[j+1]/||w[j+1]||

11.5 Linear Least Squares Estimate (LLSE)

Recall our linear formulation Ŷ = a+bX above as our estimate for Y . Then,
given X,Y ∈ H, we seek to minimize (over b, a ∈ R):

E[(Y − Ŷ )2] = E[(Y − a− bX)2].

The solution to this problem is the linear least squares estimator or
LLSE. Notice this similarity to the classical parameter estimation problem
from earlier; we’re trying to solve

Y ∗ = arg min
Ŷ ∈U
‖Y − Ŷ ‖2, U = span{1, X}.

Some change of basis and algebra magic gives us the following:

LLSE

For X,Y ∈ H, where X is variable, the LLSE of Y given X is

L[Y |X] = E[Y ] + E

[
Y

(
X −E[X]√

VarX

)]
X −E[X]√

VarX

= E[Y ] +
cov(X,Y )

VarX
(X −E[X]).

The squared error of the LLSE is then

E[(Y − L[Y |X])2] = VarY − cov(X,Y )2

VarX
.
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11.6 Minimum Mean Square Estimation (MMSE)

Say instead of restricting X to linear functions, we let Ŷ be any function of
X, say φ(X). Then finding the best function φ to minimize

E[(Y − φ(X))2]

is known as the minimum mean squared error estimator (MMSE).
One important condition is placed on this estimator; Y − φ(X) must be
orthogonal to all other functions of X. The solution to this problem is the
conditional expectation of Y given X, or E[Y |X], such that for all bounded
continuous functions φ:

E[(Y −E[Y |X])φ(X)] = 0.

The difference between MMSE and LLSE is that MMSE deals with all func-
tions on X, even nonlinear ones (which is really hard to visualize). The op-
timum φ is guaranteed to exist (since the objective function is convex – see
more in EE127), but finding it is often hard. For this course, just knowing
these basic facts about MMSE will suffice.

11.6.1 Jointly Gaussian Random Variables

X and Y are jointly Gaussian if their joint PDFs are multivariate Gaus-
sian, or equivalently if each linear combination of X and Y is Gaussian.
Generally, L[Y |X] 6= E[Y |X]. However, when X and Y happen to be jointly
Gaussian, the MMSE is equivalent to the LLSE, i.e.

MMSE for Jointly Gaussian Random Variables

If X,Y are jointly Gaussian, then

E[Y |X] = L[Y |X] = E[Y ] +
cov(X,Y )

VarX
(X −E[X]).

Other important properties that can be used to calculate the LLSE/MMSE
are shown below:
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Key Properties

Both the LLSE and MMSE are unbiased, meaning

E[X −E[X]] = E[E[Y |X]−E[Y ]] = 0.

Additionally, Y − L[Y |X] and X are uncorrelated and also indepen-
dent (since Y − L[Y |X] and X are jointly Gaussian).

11.7 Kalman Filtering

The Kalman filter is an optimal state estimation algorithm (akin to the
Linear-Quadratic Regulator from EECS127). Consider a system with a
state X(n) and an output (n) at time n. We can describe the system
as follows:

X(n+ 1) = AX(n) + V(n)

Y(n) = CX(n) + W(n)

Here, X(0), V, and W are random and zero-mean, where covV = ΣV and
covW = ΣW. We want to recursively be able to recover X to the best of
our ability based on our noisy observations Y, i.e.

X̂(n) = L[X(n)|(Y(i))ni=0].

The Kalman Filter

The filter is defined recursively as follows:

X̂(n) = AX̂(n− 1) + Kn[Y(n)−CAX̂(n− 1)]

Kn = SnC
>[CSnC

> + ΣW]−1

Sn = AΣn−1A
> + ΣV = cov(X(n)−AX̂(n− 1))

Σn = (I−KnC)Sn = cov(X(n)− X̂(n))

Some key observations: Kn and Σn can be precomputed at time 0 since
they do not depend on the observations (note: even though X̂ depends on
the observations, the residual X(n)− X̂(n) does not). Additionally if X(0)
and the noise variables V and W are Gaussian, then the Kalman filter
simply computes the MMSE. Additionally, even though this entire box is a
computational mess, it can be programmed very easily and it is incredibly
simple to solve computationally by a computer.
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